login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363994
a(n) is the number of partitions of n whose difference multiset has no duplicates; see Comments.
3
1, 1, 2, 2, 3, 3, 4, 5, 7, 6, 10, 11, 11, 15, 18, 18, 25, 29, 28, 38, 44, 47, 54, 67, 68, 84, 88, 102, 114, 137, 132, 167, 180, 204, 214, 261, 264, 315, 328, 377, 414, 476, 473, 564, 603, 677, 708, 820, 846, 969, 1028, 1131, 1214, 1364, 1414, 1596, 1701, 1858
OFFSET
0,3
COMMENTS
If M is a multiset of real numbers, then the difference multiset of M consists of the differences of pairs of numbers in M. For example, the difference multiset of {1,2,2,5} is {0,1,1,3,3,4}.
FORMULA
a(n) = A000041(n) - A364612(n).
a(n) = A325876(n) - (1 - n mod 2) for n > 0. - Andrew Howroyd, Sep 17 2023
EXAMPLE
The partitions of 8 are [8], [7,1], [6,2], [6,1,1], [5,3], [5,2,1], [5,1,1,1], [4,4], [4,3,1], [4,2,2], [4,2,1,1], [4,1,1,1,1], [3,3,2], [3,3,1,1], [3,2,2,1], [3,2,1,1,1], [3,1,1,1,1,1], [2,2,2,2], [2,2,2,1,1], [2,2,1,1,1,1], [2,1,1,1,1,1,1], [1,1,1,1,1,1,1,1].
The 7 partitions whose difference multiset is duplicate-free are [8], [7,1], [6,2], [5,3], [5,2,1], [4,4], [4,3,1].
MATHEMATICA
s[n_, k_] := s[n, k] = Subsets[IntegerPartitions[n][[k]], {2}]
g[n_, k_] := g[n, k] = DuplicateFreeQ[Map[Differences, s[n, k]]]
t[n_] := t[n] = Table[g[n, k], {k, 1, PartitionsP[n]}];
a[n_] := Count[t[n], True];
Table[a[n], {n, 1, 20}]
PROG
(Python)
from collections import Counter
from itertools import combinations
from sympy.utilities.iterables import partitions
def A363994(n): return sum(1 for p in partitions(n) if max(list(Counter(abs(d[0]-d[1]) for d in combinations(list(Counter(p).elements()), 2)).values()), default=1)==1) # Chai Wah Wu, Sep 17 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Sep 08 2023
EXTENSIONS
More terms from Alois P. Heinz, Sep 12 2023
STATUS
approved