login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the number of partitions of n whose difference multiset has no duplicates; see Comments.
3

%I #19 Sep 18 2023 02:10:41

%S 1,1,2,2,3,3,4,5,7,6,10,11,11,15,18,18,25,29,28,38,44,47,54,67,68,84,

%T 88,102,114,137,132,167,180,204,214,261,264,315,328,377,414,476,473,

%U 564,603,677,708,820,846,969,1028,1131,1214,1364,1414,1596,1701,1858

%N a(n) is the number of partitions of n whose difference multiset has no duplicates; see Comments.

%C If M is a multiset of real numbers, then the difference multiset of M consists of the differences of pairs of numbers in M. For example, the difference multiset of {1,2,2,5} is {0,1,1,3,3,4}.

%F a(n) = A000041(n) - A364612(n).

%F a(n) = A325876(n) - (1 - n mod 2) for n > 0. - _Andrew Howroyd_, Sep 17 2023

%e The partitions of 8 are [8], [7,1], [6,2], [6,1,1], [5,3], [5,2,1], [5,1,1,1], [4,4], [4,3,1], [4,2,2], [4,2,1,1], [4,1,1,1,1], [3,3,2], [3,3,1,1], [3,2,2,1], [3,2,1,1,1], [3,1,1,1,1,1], [2,2,2,2], [2,2,2,1,1], [2,2,1,1,1,1], [2,1,1,1,1,1,1], [1,1,1,1,1,1,1,1].

%e The 7 partitions whose difference multiset is duplicate-free are [8], [7,1], [6,2], [5,3], [5,2,1], [4,4], [4,3,1].

%t s[n_, k_] := s[n, k] = Subsets[IntegerPartitions[n][[k]], {2}]

%t g[n_, k_] := g[n, k] = DuplicateFreeQ[Map[Differences, s[n, k]]]

%t t[n_] := t[n] = Table[g[n, k], {k, 1, PartitionsP[n]}];

%t a[n_] := Count[t[n], True];

%t Table[a[n], {n, 1, 20}]

%o (Python)

%o from collections import Counter

%o from itertools import combinations

%o from sympy.utilities.iterables import partitions

%o def A363994(n): return sum(1 for p in partitions(n) if max(list(Counter(abs(d[0]-d[1]) for d in combinations(list(Counter(p).elements()),2)).values()),default=1)==1) # _Chai Wah Wu_, Sep 17 2023

%Y Cf. A000041, A325858, A325876, A364612.

%K nonn

%O 0,3

%A _Clark Kimberling_, Sep 08 2023

%E More terms from _Alois P. Heinz_, Sep 12 2023