login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A363995
Rectangular array by descending antidiagonals: row n consists of the numbers k such that n = 1 + maximal runlength of 0's in the ternary representation of k.
1
1, 2, 3, 4, 6, 9, 5, 10, 18, 27, 7, 11, 28, 54, 81, 8, 12, 29, 82, 162, 243, 13, 15, 36, 83, 244, 486, 729, 14, 19, 45, 108, 245, 730, 1458, 2187, 16, 20, 55, 135, 324, 731, 2188, 4374, 6561, 17, 21, 56, 163, 405, 972, 2189, 6562, 13122, 19683, 22, 24, 63
OFFSET
1,2
COMMENTS
Every positive integer occurs exactly once.
EXAMPLE
Corner:
1 2 4 5 7 8 13 14 16 17
3 6 10 11 12 15 19 20 21 24
9 18 28 29 36 45 55 56 63 72
27 54 82 83 108 135 163 164 189 216
81 162 244 245 324 405 487 488 567 648
243 486 730 731 972 1215 1459 1460 1701 1944
Let r(n) = maximal runlength of 0s in the ternary representation of n, for n >=1, so that (r(n)) = (0,0,1,0,0,1,0,0,2,...). Thus, r(9)=2, so that the first term in row 3 of the array is 9.
MATHEMATICA
d[n_] := d[n] = First[RealDigits[n, 3]]; f[w_] := FromDigits[w, 3];
s = Map[Split, Table[d[n], {n, 1, 2187}]];
x[n_] := Select[s, MemberQ[#, Table[0, n]] &];
u[n_] := Map[Flatten, x[n]];
t0 = Flatten[Table[FromDigits[#, 3] & /@ Tuples[{1, 2}, n], {n, 5}]];
t = Join[{t0}, Table[Map[f, u[n]], {n, 1, 7}]] ;
TableForm[t] (* this sequence as an array *)
Table[t[[n - k + 1, k]], {n, 8}, {k, n, 1, -1}] // Flatten (* this sequence *)
(* Next, another program *)
nwCornerD[lists_] := Quiet[Flatten[Reap[NestWhile[# + 1 &, 1, ! {} ===
Sow[Check[lists[[# - Binomial[Floor[1/2 + Sqrt[2*#]], 2]]][[1 - # +
Binomial[Floor[3/2 + Sqrt[2*#]], 2]]], {}]] &[#] &]][[2]]]];
z = 10; radix = 3;
tmp = Map[Max[Map[Count[#, 0] &, #]] &,
Map[Split, IntegerDigits[Range[radix^z], radix]]];
nwCornerD[Map[Flatten[Position[tmp, #]] &, Range[0, z]]]
(* Peter J. C. Moses, Aug 01 2023 *)
CROSSREFS
Cf. A000244 (column 1), A032924 (row 1), A363996.
Sequence in context: A285332 A344844 A185290 * A141396 A159849 A098168
KEYWORD
nonn,tabl,base
AUTHOR
Clark Kimberling, Jul 01 2023
STATUS
approved