login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of 4th powers of odd divisors of n.
20

%I #40 Jul 16 2022 13:02:09

%S 1,1,82,1,626,82,2402,1,6643,626,14642,82,28562,2402,51332,1,83522,

%T 6643,130322,626,196964,14642,279842,82,391251,28562,538084,2402,

%U 707282,51332,923522,1,1200644,83522,1503652,6643,1874162,130322,2342084,626,2825762,196964

%N Sum of 4th powers of odd divisors of n.

%H Robert Israel, <a href="/A051001/b051001.txt">Table of n, a(n) for n = 1..10000</a>

%H J. W. L. Glaisher, <a href="https://books.google.com/books?id=bLs9AQAAMAAJ&amp;pg=RA1-PA1">On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares</a>, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/OddDivisorFunction.html">Odd Divisor Function</a>.

%H <a href="/index/Ge#Glaisher">Index entries for sequences mentioned by Glaisher</a>

%F Dirichlet g.f. (1-2^(4-s))*zeta(s)*zeta(s-4). - _R. J. Mathar_, Apr 06 2011

%F G.f.: Sum_{k>=1} (2*k - 1)^4*x^(2*k-1)/(1 - x^(2*k-1)). - _Ilya Gutkovskiy_, Jan 04 2017

%F a(n) = A001159(A000265(n)). - _Robert Israel_, Jan 05 2017

%F Multiplicative with a(2^e) = 1 and a(p^e) = (p^(4*e+4)-1)/(p^4-1) for p > 2. - _Amiram Eldar_, Sep 14 2020

%F Sum_{k=1..n} a(k) ~ zeta(5)*n^5/10. - _Vaclav Kotesovec_, Sep 24 2020

%F G.f.: Sum_{n >= 1} x^n*(1 + 76*x^(2*n) + 230*x^(4*n) + 76*x^(6*n) + x^(8*n))/(1 - x^(2*n))^5. See row 5 of A060187. - _Peter Bala_, Dec 20 2021

%p f:= proc(n) add(x^4, x = numtheory:-divisors(n/2^padic:-ordp(n,2))) end proc:

%p map(f, [$1..100]); # _Robert Israel_, Jan 05 2017

%t Table[Total[Select[Divisors[n],OddQ]^4],{n,40}] (* _Harvey P. Dale_, Oct 02 2014 *)

%t f[2, e_] := 1; f[p_, e_] := (p^(4*e + 4) - 1)/(p^4 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Sep 14 2020 *)

%o (PARI) a(n) = sumdiv(n , d, (d%2)*d^4); \\ _Michel Marcus_, Jan 14 2014

%o (Python)

%o from sympy import divisor_sigma

%o def A051001(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),4)) # _Chai Wah Wu_, Jul 16 2022

%Y Cf. A000265, A000593, A001227, A001159, A050999, A051000, A051002.

%K nonn,mult,look

%O 1,3

%A _Eric W. Weisstein_