OFFSET
1,2
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = n^6 * Sum_{d|n, d<n, d odd} 1 / d^6.
G.f.: Sum_{k>=2} k^6 * x^k / (1 - x^(2*k)). - Ilya Gutkovskiy, May 18 2023
From Amiram Eldar, Oct 13 2023: (Start)
Sum_{k=1..n} a(k) = c * n^7 / 7, where c = 127*zeta(7)/128 = 1.000471548... . (End)
EXAMPLE
a(10) = 10^6 * Sum_{d|10, d<10, d odd} 1 / d^6 = 10^6 * (1/1^6 + 1/5^6) = 1000064.
MAPLE
f:= proc(n) local m, d;
m:= n/2^padic:-ordp(n, 2);
add((n/d)^6, d = select(`<`, numtheory:-divisors(m), n))
end proc:
map(f, [$1..30]); # Robert Israel, Apr 03 2023
MATHEMATICA
Table[n^6*DivisorSum[n, 1/#^6 &, And[# < n, OddQ[#]] &], {n, 29}] (* Michael De Vlieger, Apr 04 2023 *)
a[n_] := DivisorSigma[-6, n/2^IntegerExponent[n, 2]] * n^6 - Mod[n, 2]; Array[a, 100] (* Amiram Eldar, Oct 13 2023 *)
PROG
(PARI) a(n) = n^6*sumdiv(n, d, if ((d<n) && (d%2), 1/d^6)); \\ Michel Marcus, Apr 04 2023
(PARI) a(n) = n^6 * sigma(n >> valuation(n, 2), -6) - n % 2; \\ Amiram Eldar, Oct 13 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Mar 01 2022
STATUS
approved