login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352052
Sum of the 6th powers of the divisor complements of the odd proper divisors of n.
11
0, 64, 729, 4096, 15625, 46720, 117649, 262144, 532170, 1000064, 1771561, 2990080, 4826809, 7529600, 11406979, 16777216, 24137569, 34058944, 47045881, 64004096, 85884499, 113379968, 148035889, 191365120, 244156250, 308915840, 387952659, 481894400, 594823321
OFFSET
1,2
LINKS
FORMULA
a(n) = n^6 * Sum_{d|n, d<n, d odd} 1 / d^6.
G.f.: Sum_{k>=2} k^6 * x^k / (1 - x^(2*k)). - Ilya Gutkovskiy, May 18 2023
From Amiram Eldar, Oct 13 2023: (Start)
a(n) = A321810(n) * A006519(n)^6 - A000035(n).
Sum_{k=1..n} a(k) = c * n^7 / 7, where c = 127*zeta(7)/128 = 1.000471548... . (End)
EXAMPLE
a(10) = 10^6 * Sum_{d|10, d<10, d odd} 1 / d^6 = 10^6 * (1/1^6 + 1/5^6) = 1000064.
MAPLE
f:= proc(n) local m, d;
m:= n/2^padic:-ordp(n, 2);
add((n/d)^6, d = select(`<`, numtheory:-divisors(m), n))
end proc:
map(f, [$1..30]); # Robert Israel, Apr 03 2023
MATHEMATICA
Table[n^6*DivisorSum[n, 1/#^6 &, And[# < n, OddQ[#]] &], {n, 29}] (* Michael De Vlieger, Apr 04 2023 *)
a[n_] := DivisorSigma[-6, n/2^IntegerExponent[n, 2]] * n^6 - Mod[n, 2]; Array[a, 100] (* Amiram Eldar, Oct 13 2023 *)
PROG
(PARI) a(n) = n^6*sumdiv(n, d, if ((d<n) && (d%2), 1/d^6)); \\ Michel Marcus, Apr 04 2023
(PARI) a(n) = n^6 * sigma(n >> valuation(n, 2), -6) - n % 2; \\ Amiram Eldar, Oct 13 2023
CROSSREFS
Sum of the k-th powers of the divisor complements of the odd proper divisors of n for k=0..10: A091954 (k=0), A352047 (k=1), A352048 (k=2), A352049 (k=3), A352050 (k=4), A352051 (k=5), this sequence (k=6), A352053 (k=7), A352054 (k=8), A352055 (k=9), A352056 (k=10).
Sequence in context: A017676 A055015 A001014 * A050753 A074154 A351604
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Mar 01 2022
STATUS
approved