login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055015
Sum of 6th powers of digits of n.
8
0, 1, 64, 729, 4096, 15625, 46656, 117649, 262144, 531441, 1, 2, 65, 730, 4097, 15626, 46657, 117650, 262145, 531442, 64, 65, 128, 793, 4160, 15689, 46720, 117713, 262208, 531505, 729, 730, 793, 1458, 4825, 16354, 47385, 118378, 262873
OFFSET
0,3
COMMENTS
The only fixed points (n = 0, 1 and 548834) are listed in row 6 of A252648. - M. F. Hasler, Apr 12 2015
FORMULA
a(n) = Sum_{k>0} (floor(n/10^k) - 10*floor(n/10^(k+1)))^6. - Hieronymus Fischer, Jun 25 2007
a(10n+k) = a(n) + k^6, 0 <= k < 10. - Hieronymus Fischer, Jun 25 2007
MAPLE
for n from 0 to 3 do seq(n^6+j^6, j=0..9 ); od; # Zerinvary Lajos, Nov 06 2006
MATHEMATICA
Table[Sum[DigitCount[n][[i]] i^6, {i, 9}], {n, 0, 40}] (* Bruno Berselli, Feb 01 2013 *)
PROG
(Magma) [0] cat [&+[d^6: d in Intseq(n)]: n in [1..40]]; // Bruno Berselli, Feb 01 2013
(PARI) A055015(n)=sum(i=1, #n=digits(n), n[i]^6) \\ M. F. Hasler, Apr 12 2015
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Henry Bottomley, May 31 2000
STATUS
approved