login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A076314 a(n) = floor(n/10) + (n mod 10). 12
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 8, 9, 10, 11, 12, 13, 14 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

For n<100 this is equal to the digital sum of n (see A007953). - Hieronymus Fischer, Jun 17 2007

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..10000

Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,1,-1).

FORMULA

From Hieronymus Fischer, Jun 17 2007: (Start)

a(n) = n - 9*floor(n/10).

a(n) = (n + 9*(n mod 10))/10.

a(n) = n - 9*A002266(A004526(n)) = n - 9*A004526(A002266(n)).

a(n) = (n + 9*A010879(n))/10.

a(n) = (n + 9*A000035(n) + 18*A010874(A004526(n)))/10.

a(n) = (n + 9*A010874(n) + 45*A000035(A002266(n)))/10.

G.f.: x*(8*x^10 - 9*x^9 + 1)/((1 - x^10)*(1 - x)^2). (End)

a(n) = A033930(n) for 1 <= n < 100. - R. J. Mathar, Sep 21 2008

a(n) = +a(n-1) + a(n-10) - a(n-11). - R. J. Mathar, Feb 20 2011

EXAMPLE

a(15) = floor(15 / 10) + (15 mod 10) = 1 + 5 = 6. - Indranil Ghosh, Feb 13 2017

MATHEMATICA

Table[n - 9 Floor[n / 10], {n, 0, 100}] (* Vincenzo Librandi Dec 10 2016 *)

PROG

(Haskell)

a076314 = uncurry (+) . flip divMod 10 -- Reinhard Zumkeller, Jun 01 2013

(PARI) a(n)=n\10+n%10 \\ Charles R Greathouse IV, Sep 24 2015

(MAGMA) [n-9*Floor(n/10):n in [0..100]]; // Vincenzo Librandi, Dec 10 2016

(Python) def A076314(n): return (n/10)+(n%10) # Indranil Ghosh, Feb 13 2017

CROSSREFS

Cf. A076313, A010879, A076309, A076310, A076311, A076312, A055017, A007953, A003132.

Sequence in context: A177274 A131650 A033930 * A007953 A080463 A209685

Adjacent sequences:  A076311 A076312 A076313 * A076315 A076316 A076317

KEYWORD

nonn,easy

AUTHOR

Reinhard Zumkeller, Oct 06 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 22:56 EDT 2019. Contains 328211 sequences. (Running on oeis4.)