OFFSET
0,3
COMMENTS
The existence of such a six-sided polygon implies that every element of the sextuple is less than the sum of the other elements.
LINKS
Giovanni Corbelli, Visual Basic routine for generating number of six-sided polygons
Giovanni Corbelli Proof of the formula: Number of k-tuples with elements in {1,2,...,N} corresponding to k-sided polygons
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
FORMULA
a(n) = n^6 - 6*binomial(n+1,6) = n^6 - (n+1)*binomial(n,5).
General formula for k-tuples: a_k(n) = n^k - k*binomial(n+1,k) = n^k - (n+1)*binomial(n,k-1).
G.f.: x*(1 + 57*x + 302*x^2 + 302*x^3 + 51*x^4 + x^5)/(1 - x)^7. - Stefano Spezia, Sep 27 2021
MATHEMATICA
CoefficientList[Series[x (1+57x+302x^2+302x^3+51x^4+x^5)/(1-x)^7, {x, 0, 40}], x] (* or *) LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 1, 64, 729, 4096, 15619, 46614}, 40] (* Harvey P. Dale, Oct 30 2024 *)
PROG
(Visual Basic) ' See links.
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Giovanni Corbelli, Jul 26 2021
STATUS
approved