The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A346636 a(n) is the number of quadruples (a_1, a_2, a_3, a_4) having all terms in {1,...,n} such that there exists a quadrilateral with these side lengths. 3
 0, 1, 16, 77, 236, 565, 1156, 2121, 3592, 5721, 8680, 12661, 17876, 24557, 32956, 43345, 56016, 71281, 89472, 110941, 136060, 165221, 198836, 237337, 281176, 330825, 386776, 449541, 519652, 597661, 684140, 779681, 884896, 1000417, 1126896, 1265005, 1415436 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The existence of such a four-sided polygon implies that every element of the quadruple is less than the sum of the other elements. LINKS Giovanni Corbelli, VB routine for generating number of four-sided polygons Sean A. Irvine, Java program (github) FORMULA Formula: a(n) = n^4 - 4*binomial(n+1,4) = n^4 - (n+1)*binomial(n,3). General formula for k-tuples: a_k(n) = n^k - k*binomial(n+1,k) = n^k - (n+1)*binomial(n,k-1). PROG (Visual Basic) See Links CROSSREFS Cf. A006003, A346637, A346638. Sequence in context: A300919 A007834 A228741 * A200873 A082966 A198182 Adjacent sequences:  A346633 A346634 A346635 * A346637 A346638 A346639 KEYWORD nonn AUTHOR Giovanni Corbelli, Jul 26 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 7 12:47 EDT 2022. Contains 355148 sequences. (Running on oeis4.)