|
|
A352038
|
|
Sum of the 10th powers of the odd proper divisors of n.
|
|
11
|
|
|
0, 1, 1, 1, 1, 59050, 1, 1, 59050, 9765626, 1, 59050, 1, 282475250, 9824675, 1, 1, 3486843451, 1, 9765626, 282534299, 25937424602, 1, 59050, 9765626, 137858491850, 3486843451, 282475250, 1, 576660215300, 1, 1, 25937483651, 2015993900450, 292240875, 3486843451
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,6
|
|
LINKS
|
Table of n, a(n) for n=1..36.
|
|
FORMULA
|
a(n) = Sum_{d|n, d<n, d odd} d^10.
G.f.: Sum_{k>=1} (2*k-1)^10 * x^(4*k-2) / (1 - x^(2*k-1)). - Ilya Gutkovskiy, Mar 02 2022
|
|
EXAMPLE
|
a(10) = 9765626; a(10) = Sum_{d|10, d<10, d odd} d^10 = 1^10 + 5^10 = 9765626.
|
|
PROG
|
(Python)
from math import prod
from sympy import factorint
def A352038(n): return prod((p**(10*(e+1))-1)//(p**10-1) for p, e in factorint(n).items() if p > 2) - (n**10 if n % 2 else 0) # Chai Wah Wu, Mar 01 2022
|
|
CROSSREFS
|
Sum of the k-th powers of the odd proper divisors of n for k=0..10: A091954 (k=0), A091570 (k=1), A351647 (k=2), A352031 (k=3), A352032 (k=4), A352033 (k=5), A352034 (k=6), A352035 (k=7), A352036 (k=8), A352037 (k=9), this sequence (k=10).
Sequence in context: A017314 A017434 A017566 * A321814 A288886 A210172
Adjacent sequences: A352035 A352036 A352037 * A352039 A352040 A352041
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Wesley Ivan Hurt, Mar 01 2022
|
|
STATUS
|
approved
|
|
|
|