|
|
A351647
|
|
Sum of the squares of the odd proper divisors of n.
|
|
12
|
|
|
0, 1, 1, 1, 1, 10, 1, 1, 10, 26, 1, 10, 1, 50, 35, 1, 1, 91, 1, 26, 59, 122, 1, 10, 26, 170, 91, 50, 1, 260, 1, 1, 131, 290, 75, 91, 1, 362, 179, 26, 1, 500, 1, 122, 341, 530, 1, 10, 50, 651, 299, 170, 1, 820, 147, 50, 371, 842, 1, 260, 1, 962, 581, 1, 195, 1220, 1, 290
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,6
|
|
LINKS
|
|
|
FORMULA
|
a(n) = Sum_{d|n, d<n, d odd} d^2.
G.f.: Sum_{k>=1} (2*k-1)^2 * x^(4*k-2) / (1 - x^(2*k-1)). - Ilya Gutkovskiy, Mar 02 2022
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(3)-1)/6 = 0.0336761505... . (End)
|
|
EXAMPLE
|
a(10) = 26; a(10) = Sum_{d|10, d<10, d odd} d^2 = 1^2 + 5^2 = 26.
|
|
MATHEMATICA
|
f[2, e_] := 1; f[p_, e_] := (p^(2*e+2) - 1)/(p^2 - 1); a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - If[OddQ[n], n^2, 0]; Array[a, 60] (* Amiram Eldar, Oct 11 2023 *)
|
|
PROG
|
(PARI) a(n) = sumdiv(n, d, if ((d%2) && (d<n), d^2)); \\ Michel Marcus, Mar 02 2022
|
|
CROSSREFS
|
Sum of the k-th powers of the odd proper divisors of n for k=0..10: A091954 (k=0), A091570 (k=1), this sequence (k=2), A352031 (k=3), A352032 (k=4), A352033 (k=5), A352034 (k=6), A352035 (k=7), A352036 (k=8), A352037 (k=9), A352038 (k=10).
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|