|
|
A351648
|
|
G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 - x)) / (1 - x)^5.
|
|
0
|
|
|
1, 1, 1, 6, 22, 69, 224, 819, 3296, 13942, 60941, 276399, 1309207, 6479609, 33377271, 178186018, 983386188, 5604262733, 32955823822, 199771724691, 1246747659198, 8000380516898, 52728354046939, 356593588048023, 2472544614851517, 17563971319301049, 127727505109579581
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
LINKS
|
|
|
FORMULA
|
a(0) = a(1) = 1; a(n) = Sum_{k=0..n-2} binomial(n+2,k+4) * a(k).
|
|
MATHEMATICA
|
nmax = 26; A[_] = 0; Do[A[x_] = 1 + x + x^2 A[x/(1 - x)]/(1 - x)^5 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n + 2, k + 4] a[k], {k, 0, n - 2}]; Table[a[n], {n, 0, 26}]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|