login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305032
a(0) = 0, a(1) = 1 and a(n) = 6*a(n-1)/(n-1) + 4*a(n-2) for n > 1.
2
0, 1, 6, 22, 68, 190, 500, 1260, 3080, 7350, 17220, 39732, 90552, 204204, 456456, 1012440, 2230800, 4886310, 10647780, 23094500, 49884120, 107343236, 230205976, 492156392, 1049212528, 2230928700, 4732273000, 10015777800, 21154820400, 44596287000, 93846099600
OFFSET
0,3
COMMENTS
Let a(0) = 0, a(1) = 1 and a(n) = 2*m*a(n-1)/(n-1) + k^2*a(n-2), for n > 1, then the g.f. is x/(2*m) * d/dx ((1 + k*x)/(1 - k*x))^(m/k).
LINKS
FORMULA
a(n) = n*A305031(n)/6.
G.f.: x*sqrt(1-4*x^2)/(1-2*x)^3.
MATHEMATICA
CoefficientList[Series[x*Sqrt[1-4*x^2]/(1-2*x)^3, {x, 0, 40}], x] (* G. C. Greubel, Jun 07 2023 *)
PROG
(Magma) [n le 2 select n-1 else 2*(3*Self(n-1) + 2*(n-2)*Self(n-2))/(n-2): n in [1..40]]; // G. C. Greubel, Jun 07 2023
(SageMath)
@CachedFunction
def a(n): # b = A305032
if n<2: return n
else: return 2*(3*a(n-1) + 2*(n-1)*a(n-2))//(n-1)
[a(n) for n in range(41)] # G. C. Greubel, Jun 07 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 24 2018
STATUS
approved