login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353703
Palindromes (A002113) in A157037.
1
6, 22, 66, 202, 222, 282, 434, 454, 474, 494, 555, 595, 838, 858, 969, 1001, 1551, 1771, 3333, 3553, 5335, 6006, 6226, 6886, 8778, 9889, 12921, 14541, 15051, 16261, 16761, 17171, 18681, 19491, 20202, 20602, 20802, 20902, 24142, 24242, 24542, 28282, 28482, 30003
OFFSET
1,1
COMMENTS
Intersection of A002113 and A157037.
LINKS
EXAMPLE
22 = A002113(12) and 22 = A157037(3), so 22 is a term.
66 = A002113(16) and 22 = A157037(8), so 66 is a term.
MAPLE
filter:= proc(n) local t;
isprime(n*add(t[2]/t[1], t=ifactors(n)[2]))
end proc:
digrev:= proc(n) local L, i;
L:= convert(n, base, 10);
add(L[-i]*10^(i-1), i=1..nops(L))
end proc:
N:= 100: # for a(1) to a(N)
Res:= 6: count:= 1:
for d from 2 while count < N do
if d::even then
m:= d/2;
for n from 10^(m-1) to 10^m-1 while count < N do
v:= n*10^m + digrev(n);
if filter(v) then Res:= Res, v; count:= count+1 fi;
od
else
m:= (d-1)/2;
for n from 10^(m-1) to 10^m-1 while count < N do
for y from 0 to 9 while count < N do
v:= n*10^(m+1)+y*10^m+digrev(n);
if filter(v) then Res:= Res, v; count:= count+1 fi;
od od:
fi
od:
Res; # Robert Israel, May 09 2023
MATHEMATICA
d[0] = d[1] = 0; d[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[30003], PalindromeQ[#] && PrimeQ[d[#]] &] (* Amiram Eldar, May 09 2022 *)
PROG
(Magma) f:=func<n |n le 1 select 0 else n*(&+[Factorisation(n)[i][2] / Factorisation(n)[i][1]: i in [1..#Factorisation(n)]])>; pal:=func<n|Intseq(n) eq Reverse(Intseq(n))>; [n:n in [2..30003]| pal(n) and IsPrime(Floor(f(n)))];
(PARI) ad(n) = vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415
isok(m) = my(d); isprime(ad(m)) && (d=digits(m)) && (d==Vecrev(d)); \\ Michel Marcus, May 09 2022
(Python)
from itertools import chain, count, islice
from sympy import isprime, factorint
def A353703_gen(): # generator of terms
return filter(lambda n:isprime(sum(n*e//p for p, e in factorint(n).items())), chain.from_iterable(chain((int((s:=str(d))+s[-2::-1]) for d in range(10**l, 10**(l+1))), (int((s:=str(d))+s[::-1]) for d in range(10**l, 10**(l+1)))) for l in count(0)))
A353703_list = list(islice(A353703_gen(), 20)) # Chai Wah Wu, Jun 23 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Marius A. Burtea, May 08 2022
STATUS
approved