login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351646
a(n) = A097465(n) - n.
3
0, 1, 2, -2, 2, -2, 2, 3, -3, 3, -3, 3, 4, -4, 4, -4, 6, -4, 6, -4, 0, 4, 6, -6, 6, -6, 0, -6, 6, -6, 6, -4, 0, 4, 6, -6, 6, -6, 0, -6, 4, 5, -7, 5, -5, 5, -3, 5, -7, 5, -5, 5, -3, 5, -7, 5, -5, 5, -1, 5, -7, 5, -7, 5, -3, 5, -7, 5, -5, 5, -3, 5, -1, 5, -9, 7
OFFSET
1,3
COMMENTS
Zeros correspond to fixed points in A097465, which are listed in A352096.
LINKS
Michael De Vlieger, Annotated scatterplot of a(n), n = 1..300000, showing even terms in red, odd in blue, with positions of zeros in italic.
MATHEMATICA
nn = 2^20; c = {1}; j = 1; u = 2; {1}~Join~Reap[Do[k = u; While[Nand[FreeQ[c, k], CoprimeQ[j, k], k != j + 1, k != j - 1], k++]; j = k; AppendTo[c, k]; Sow[k - i]; If[k == u, While[MemberQ[c, u], u++]; c = DeleteCases[c, _?(# < u &)]], {i, 2, nn}]][[-1, -1]]
CROSSREFS
Sequence in context: A060384 A105564 A241766 * A025811 A034258 A184349
KEYWORD
sign,easy
AUTHOR
Michael De Vlieger, May 05 2022
STATUS
approved