login
A045500
Fifth-from-right diagonal of triangle A121207.
9
1, 1, 6, 27, 125, 635, 3488, 20425, 126817, 831915, 5744784, 41618459, 315388311, 2493721645, 20526285716, 175529425815, 1556577220651, 14290644428279, 135624265589086, 1328702240382589, 13420603191219111, 139592874355534071
OFFSET
0,3
COMMENTS
With leading 0 and offset 4: number of permutations beginning with 54321 and avoiding 1-23. - Ralf Stephan, Apr 25 2004
a(n) is the number of set partitions of {1,2,...,n+4} in which the last block has length 4: the blocks are arranged in order of their least element. - Don Knuth, Jun 12 2017
REFERENCES
See also references under sequence A040027.
LINKS
S. Kitaev, Generalized pattern avoidance with additional restrictions, Sem. Lothar. Combinat. B48e (2003).
S. Kitaev and T. Mansour, Simultaneous avoidance of generalized patterns, arXiv:math/0205182 [math.CO], 2014.
FORMULA
a(n+1) = Sum_{k=0..n} binomial(n+4, k+4)*a(k). - Vladeta Jovovic, Nov 10 2003
With offset 4, e.g.f.: x^4 + exp(exp(x))/24 * int[0..x, t^4*exp(-exp(t)+t) dt]. - Ralf Stephan, Apr 25 2004
O.g.f. satisfies: A(x) = 1 + x*A( x/(1-x) ) / (1-x)^5. - Paul D. Hanna, Mar 23 2012
MATHEMATICA
a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n+3, k+4]*a[k], {k, 0, n-1}];
Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Jul 14 2018, after Vladeta Jovovic *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+x*subst(A, x, x/(1-x+x*O(x^n)))/(1-x)^5); polcoeff(A, n)} /* Paul D. Hanna, Mar 23 2012 */
(Python)
# The function Gould_diag is defined in A121207.
A045500_list = lambda size: Gould_diag(5, size)
print(A045500_list(24)) # Peter Luschny, Apr 24 2016
CROSSREFS
Column k=4 of A124496.
Sequence in context: A249792 A002912 A030297 * A360057 A377263 A109115
KEYWORD
easy,nonn
AUTHOR
EXTENSIONS
More terms from Vladeta Jovovic, Nov 10 2003
Entry revised by N. J. A. Sloane, Dec 11 2006
STATUS
approved