login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A045502
Numbers k such that 2*k+1 and 3*k+1 are squares.
5
0, 40, 3960, 388080, 38027920, 3726348120, 365144087880, 35780394264160, 3506113493799840, 343563341998120200, 33665701402321979800, 3298895174085555900240, 323258061358982156243760, 31675991118006165755988280, 3103923871503245261930607720
OFFSET
0,2
COMMENTS
Problem 1 for the 3rd grade of the 38th Mathematics Competition of the Republic of Slovenia (1998) was to prove that if k is a natural number such that 2*k+1 and 3*k+1 are perfect squares, then k is divisible by 40 (see link with solution Crux Mathematicorum and formula Mar 25 2021). - Bernard Schott, Mar 25 2021
LINKS
John Albert, Pell Equations, Putnam practice, November 17, 2004 (1-2).
R. S. Luthar, Problem E2606, Amer. Math. Monthly, 84 (1977), 823-824.
R. E. Woodrow, Problem 1 for the third grade of the 38th Mathematics competition of the Republic of Slovenia (1998), Crux Mathematicorum, The Olympiad Corner, p. 208, April 1999, Vol. 25, No. 4.
FORMULA
From Colin Barker, Mar 23 2017: (Start)
O.g.f.: 40*x / ((1 - x)*(1 - 98*x + x^2)).
a(n) = 99*a(n-1)- 99*a(n-2) + a(n-3) for n>2.
a(n) = (-10 + (5 - 2*sqrt(6))*(49 + 20*sqrt(6))^(-n) + (5 + 2*sqrt(6))*(49 + 20*sqrt(6))^n)/24. (End)
From G. C. Greubel, Jan 13 2020: (Start)
a(n) = 5*(ChebyshevT(n, 49) + 48*ChebyshevU(n-1, 48) - 1)/12.
a(n) = 4*ChebyshevU(n-1, 5)*ChebyshevU(n, 5). (End)
a(n) = 40*A278620(n). - Bernard Schott, Mar 25 2021
MAPLE
seq(coeff(series(40*x/((1-x)*(x^2-98*x+1)), x, n+1), x, n), n=0..15); # Muniru A Asiru, Jul 17 2018
MATHEMATICA
f[0]=0; f[1]=2; f[n_]:= f[n]= 10*f[n-1] -f[n-2]; a[n_]:= f[n]*f[n+1];
CoefficientList[Series[40x/((1-x)(1-98x+x^2)), {x, 0, 15}], x] (* Michael De Vlieger, Jul 20 2018 *)
Table[5*(ChebyshevT[n, 49] +48*ChebyshevU[n-1, 49] -1)/12, {n, 0, 15}] (* G. C. Greubel, Jan 13 2020 *)
LinearRecurrence[{99, -99, 1}, {0, 40, 3960}, 20] (* Harvey P. Dale, Dec 02 2023 *)
PROG
(PARI) concat(0, Vec(40*x/((1-x)*(1-98*x+x^2))+O(x^20))) \\ Colin Barker, Mar 23 2017
(GAP) a:=[0, 40, 3960];; for n in [4..15] do a[n]:=99*a[n-1]-99*a[n-2]+a[n-3]; od; a; # Muniru A Asiru, Jul 17 2018
(Magma) I:=[0, 40, 3960]; [n le 3 select I[n] else 99*Self(n-1) -99*Self(n-2) + Self(n-3): n in [1..15]]; // G. C. Greubel, Jan 13 2020
(Sage) [4*chebyshev_U(n-1, 5)*chebyshev_U(n, 5) for n in (0..15)] # G. C. Greubel, Jan 13 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Fred Schwab (fschwab(AT)nrao.edu)
STATUS
approved