OFFSET
0,2
COMMENTS
Problem 1 for the 3rd grade of the 38th Mathematics Competition of the Republic of Slovenia (1998) was to prove that if k is a natural number such that 2*k+1 and 3*k+1 are perfect squares, then k is divisible by 40 (see link with solution Crux Mathematicorum and formula Mar 25 2021). - Bernard Schott, Mar 25 2021
LINKS
Colin Barker, Table of n, a(n) for n = 0..500.
John Albert, Pell Equations, Putnam practice, November 17, 2004 (1-2).
R. S. Luthar, Problem E2606, Amer. Math. Monthly, 84 (1977), 823-824.
R. E. Woodrow, Problem 1 for the third grade of the 38th Mathematics competition of the Republic of Slovenia (1998), Crux Mathematicorum, The Olympiad Corner, p. 208, April 1999, Vol. 25, No. 4.
Index entries for linear recurrences with constant coefficients, signature (99,-99,1).
FORMULA
From Colin Barker, Mar 23 2017: (Start)
O.g.f.: 40*x / ((1 - x)*(1 - 98*x + x^2)).
a(n) = 99*a(n-1)- 99*a(n-2) + a(n-3) for n>2.
a(n) = (-10 + (5 - 2*sqrt(6))*(49 + 20*sqrt(6))^(-n) + (5 + 2*sqrt(6))*(49 + 20*sqrt(6))^n)/24. (End)
From G. C. Greubel, Jan 13 2020: (Start)
a(n) = 5*(ChebyshevT(n, 49) + 48*ChebyshevU(n-1, 48) - 1)/12.
a(n) = 4*ChebyshevU(n-1, 5)*ChebyshevU(n, 5). (End)
a(n) = 40*A278620(n). - Bernard Schott, Mar 25 2021
MAPLE
seq(coeff(series(40*x/((1-x)*(x^2-98*x+1)), x, n+1), x, n), n=0..15); # Muniru A Asiru, Jul 17 2018
MATHEMATICA
f[0]=0; f[1]=2; f[n_]:= f[n]= 10*f[n-1] -f[n-2]; a[n_]:= f[n]*f[n+1];
CoefficientList[Series[40x/((1-x)(1-98x+x^2)), {x, 0, 15}], x] (* Michael De Vlieger, Jul 20 2018 *)
Table[5*(ChebyshevT[n, 49] +48*ChebyshevU[n-1, 49] -1)/12, {n, 0, 15}] (* G. C. Greubel, Jan 13 2020 *)
LinearRecurrence[{99, -99, 1}, {0, 40, 3960}, 20] (* Harvey P. Dale, Dec 02 2023 *)
PROG
(PARI) concat(0, Vec(40*x/((1-x)*(1-98*x+x^2))+O(x^20))) \\ Colin Barker, Mar 23 2017
(GAP) a:=[0, 40, 3960];; for n in [4..15] do a[n]:=99*a[n-1]-99*a[n-2]+a[n-3]; od; a; # Muniru A Asiru, Jul 17 2018
(Magma) I:=[0, 40, 3960]; [n le 3 select I[n] else 99*Self(n-1) -99*Self(n-2) + Self(n-3): n in [1..15]]; // G. C. Greubel, Jan 13 2020
(Sage) [4*chebyshev_U(n-1, 5)*chebyshev_U(n, 5) for n in (0..15)] # G. C. Greubel, Jan 13 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Fred Schwab (fschwab(AT)nrao.edu)
STATUS
approved