The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A045505 Convolution of A000108 (Catalan numbers) with A040075. 4
 1, 21, 262, 2525, 20754, 152946, 1040556, 6659037, 40599130, 237978598, 1350216660, 7453221490, 40188242420, 212349718980, 1102352779992, 5634083759325, 28400234400810, 141402315307550, 696257439473860 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Also convolution of A045492 with A000984 (central binomial coefficients); also convolution of A042985 with A000302 (powers of 4). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 FORMULA a(n) = binomial(n+5, 4)*(4^(n+1) - A000984(n+5)/A000984(4))/2, A000984(n) = binomial(2*n, n). G.f. c(x)/(1-4*x)^5, where c(x) = g.f. for Catalan numbers. MAPLE seq(coeff(series((1-sqrt(1-4*x))/(2*x*(1-4*x)^5), x, n+1), x, n), n = 0..20); # G. C. Greubel, Jan 13 2020 MATHEMATICA Table[Binomial[n+5, 4]*(2^(2*n+1) -Binomial[2*n+10, n+5]/140), {n, 0, 20}] (* G. C. Greubel, Jan 13 2020 *) PROG (PARI) vector(21, n, binomial(n+5, 4)*(2^(2*n+1) -binomial(2*n+10, n+5)/140)) \\ G. C. Greubel, Jan 13 2020 (MAGMA) [Binomial(n+5, 4)*(2^(2*n+1) - Binomial(2*n+10, n+5)/140): n in [0..20]]; // G. C. Greubel, Jan 13 2020 (Sage) [binomial(n+5, 4)*(2^(2*n+1) - binomial(2*n+10, n+5)/140) for n in (0..20)] # G. C. Greubel, Jan 13 2020 (GAP) List([0..20], n-> Binomial(n+5, 4)*(2^(2*n+1) - Binomial(2*n+10, n+5)/140)); # G. C. Greubel, Jan 13 2020 CROSSREFS Sequence in context: A125433 A135122 A231380 * A169895 A092794 A133717 Adjacent sequences:  A045502 A045503 A045504 * A045506 A045507 A045508 KEYWORD easy,nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 25 08:42 EST 2020. Contains 332221 sequences. (Running on oeis4.)