login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A045492
Convolution of A000108 (Catalan numbers) with A020920.
5
1, 19, 218, 1955, 15086, 105102, 679764, 4154403, 24281510, 136887322, 749032492, 3997228430, 20880823820, 107088473660, 540472210728, 2689562860323, 13217998697430, 64240718824930, 309108505173820
OFFSET
0,2
COMMENTS
Also convolution of A042985 with A000984 (central binomial coefficients); also convolution of A045724 with A000302 (powers of 4).
LINKS
FORMULA
a(n) = binomial(n+5, 4)*(A000984(n+5)/A000984(4) - 4^(n+2)/(n+5))/2, A000984(n)=binomial(2*n, n);
G.f.: c(x)/(1-4*x)^(9/2) = (2-c(x))/(1-4*x)^5, where c(x) = g.f. for Catalan numbers.
MAPLE
seq(coeff(series((sqrt(1-4*x) +4*x-1)/(2*x*(1-4*x)^5), x, n+1), x, n), n = 0..20); # G. C. Greubel, Jan 13 2020
MATHEMATICA
Table[Binomial[n+5, 4]*(Binomial[2*n+10, n+5]/140 - 2^(2*n+3)/(n+5)), {n, 0, 20}] (* G. C. Greubel, Jan 13 2020 *)
PROG
(PARI) vector(20, n, binomial(n+4, 4)*(binomial(2*n+8, n+4)/140 - 2^(2*n+1)/(n+4)) ) \\ G. C. Greubel, Jan 13 2020
(Magma) [Binomial(n+5, 4)*(Binomial(2*n+10, n+5)/140 - 2^(2*n+3)/(n+5)): n in [0..20]]; // G. C. Greubel, Jan 13 2020
(Sage) [binomial(n+5, 4)*(binomial(2*n+10, n+5)/140 - 2^(2*n+3)/(n+5)) for n in (0..20)] # G. C. Greubel, Jan 13 2020
(GAP) List([0..20], n-> Binomial(n+5, 4)*(Binomial(2*n+10, n+5)/140 - 2^(2*n+3)/(n+5))); # G. C. Greubel, Jan 13 2020
CROSSREFS
Sequence in context: A220978 A367980 A009474 * A026892 A142487 A022743
KEYWORD
easy,nonn
STATUS
approved