login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220978
a(n) = 3^(2*n+1) - 3^(n+1) + 1: The left Aurifeuillian factor of 3^(6*n+3) + 1.
12
1, 19, 217, 2107, 19441, 176419, 1592137, 14342347, 129120481, 1162202419, 10460176057, 94142647387, 847287015121, 7625592702019, 68630363015977, 617673353237227, 5559060437415361, 50031544711579219, 450283904728735897, 4052555149532191867
OFFSET
0,2
COMMENTS
The corresponding right Aurifeuillian factor is A198410(n+2): 3^(6*n+3) + 1 = (3^(2*n+1) + 1) * a(n) * A198410(n+2).
FORMULA
a(n) = 13*a(n-1) - 39*a(n-2) + 27*a(n-3).
G.f.: (1 + 3*x)^2/((1 - x)*(1 - 3*x)*(1 - 9*x)).
MATHEMATICA
Table[3^(2n+1) - 3^(n+1) + 1, {n, 0, 30}]
LinearRecurrence[{13, -39, 27}, {1, 19, 217}, 30] (* Harvey P. Dale, Mar 17 2013 *)
PROG
(PARI) Vec((1 + 3*x)^2/((1 - x)*(1 - 3*x)*(1 - 9*x)) + O(x^30)) \\ Michel Marcus, Feb 12 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Stuart Clary, Dec 27 2012
STATUS
approved