login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Convolution of A000108 (Catalan numbers) with A020920.
5

%I #8 Sep 08 2022 08:44:56

%S 1,19,218,1955,15086,105102,679764,4154403,24281510,136887322,

%T 749032492,3997228430,20880823820,107088473660,540472210728,

%U 2689562860323,13217998697430,64240718824930,309108505173820

%N Convolution of A000108 (Catalan numbers) with A020920.

%C Also convolution of A042985 with A000984 (central binomial coefficients); also convolution of A045724 with A000302 (powers of 4).

%H G. C. Greubel, <a href="/A045492/b045492.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = binomial(n+5, 4)*(A000984(n+5)/A000984(4) - 4^(n+2)/(n+5))/2, A000984(n)=binomial(2*n, n);

%F G.f.: c(x)/(1-4*x)^(9/2) = (2-c(x))/(1-4*x)^5, where c(x) = g.f. for Catalan numbers.

%p seq(coeff(series((sqrt(1-4*x) +4*x-1)/(2*x*(1-4*x)^5), x, n+1), x, n), n = 0..20); # _G. C. Greubel_, Jan 13 2020

%t Table[Binomial[n+5, 4]*(Binomial[2*n+10, n+5]/140 - 2^(2*n+3)/(n+5)), {n,0,20}] (* _G. C. Greubel_, Jan 13 2020 *)

%o (PARI) vector(20, n, binomial(n+4, 4)*(binomial(2*n+8, n+4)/140 - 2^(2*n+1)/(n+4)) ) \\ _G. C. Greubel_, Jan 13 2020

%o (Magma) [Binomial(n+5, 4)*(Binomial(2*n+10, n+5)/140 - 2^(2*n+3)/(n+5)): n in [0..20]]; // _G. C. Greubel_, Jan 13 2020

%o (Sage) [binomial(n+5, 4)*(binomial(2*n+10, n+5)/140 - 2^(2*n+3)/(n+5)) for n in (0..20)] # _G. C. Greubel_, Jan 13 2020

%o (GAP) List([0..20], n-> Binomial(n+5, 4)*(Binomial(2*n+10, n+5)/140 - 2^(2*n+3)/(n+5))); # _G. C. Greubel_, Jan 13 2020

%K easy,nonn

%O 0,2

%A _Wolfdieter Lang_