login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A045501
Third-from-right diagonal of triangle A121207.
8
1, 1, 4, 14, 54, 233, 1101, 5625, 30846, 180474, 1120666, 7352471, 50772653, 367819093, 2787354668, 22039186530, 181408823710, 1551307538185, 13756835638385, 126298933271289, 1198630386463990, 11742905240821910
OFFSET
1,3
COMMENTS
With leading 0 and offset 2: number of permutations beginning with 321 and avoiding 1-23. - Ralf Stephan, Apr 25 2004
Second diagonal in table of binomial recurrence coefficients. Related to A040027. - Vladeta Jovovic, Feb 05 2008
Equals eigensequence of triangle A104712. - Gary W. Adamson, Apr 10 2009
a(n) is the number of set partitions of {1,2,...,n+1} in which the last block has length 2; the blocks are arranged in order of their least element. - Don Knuth, Jun 12 2017
LINKS
S. Kitaev, Generalized pattern avoidance with additional restrictions, Sem. Lothar. Combinat. B48e (2003).
S. Kitaev and T. Mansour, Simultaneous avoidance of generalized patterns, arXiv:math/0205182 [math.CO], 2002.
FORMULA
a(n+1) = Sum_{k=0..n} binomial(n+2, k+2)*a(k). - Vladeta Jovovic, Nov 10 2003
With offset 2, e.g.f.: x^2 + exp(exp(x))/2 * Integral_{0..x} t^2*exp(-exp(t)+t) dt. - Ralf Stephan, Apr 25 2004
G.f.: A(x) = Sum_{k>=0} x^(k+1)/((1-k*x)^2 * Product_{m=0..k} (1 - m*x)). - Vladeta Jovovic, Feb 05 2008
O.g.f. satisfies: A(x) = x + x*A( x/(1-x) ) / (1-x)^2. - Paul D. Hanna, Mar 23 2012
MATHEMATICA
a[1] = a[2] = 1; a[n_] := a[n] = Sum[Binomial[n, k+1]*a[k], {k, 0, n-1}];
Array[a, 22] (* Jean-François Alcover, Jul 14 2018, after Vladeta Jovovic *)
PROG
(PARI) {a(n)=local(A=x+x^2); for(i=1, n, A=x+x*subst(A, x, x/(1-x+x*O(x^n)))/(1-x)^2); polcoeff(A, n)} /* Paul D. Hanna, Mar 23 2012 */
(Python)
# The function Gould_diag is defined in A121207.
A045501_list = lambda size: Gould_diag(3, size)
print(A045501_list(24)) # Peter Luschny, Apr 24 2016
CROSSREFS
Cf. A104712. - Gary W. Adamson, Apr 10 2009
Column k=2 of A124496.
Sequence in context: A302171 A366735 A307733 * A162481 A280208 A088655
KEYWORD
easy,nonn
AUTHOR
EXTENSIONS
More terms from Vladeta Jovovic, Nov 10 2003
Entry revised by N. J. A. Sloane, Dec 11 2006
STATUS
approved