login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A104712 Pascal's triangle, with the first two columns removed. 20
1, 3, 1, 6, 4, 1, 10, 10, 5, 1, 15, 20, 15, 6, 1, 21, 35, 35, 21, 7, 1, 28, 56, 70, 56, 28, 8, 1, 36, 84, 126, 126, 84, 36, 9, 1, 45, 120, 210, 252, 210, 120, 45, 10, 1, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1, 78, 286, 715 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
2,2
COMMENTS
A000295 (Eulerian numbers) gives the row sums.
Write A004736 and Pascal's triangle as infinite lower triangular matrices A and B; then A*B is this triangle.
From Peter Luschny, Apr 10 2011: (Start)
A slight variation has a combinatorial interpretation: remove the last column and the second one from Pascal's triangle. Let P(m, k) denote the set partitions of {1,2,..,n} with the following properties:
(a) Each partition has at least one singleton block;
(c) k is the size of the largest block of the partition;
(b) m = n - k + 1 is the number of parts of the partition.
Then A000295(n) = Sum_{k=1..n} card(P(n-k+1,k)).
For instance, A000295(4) = P(4,1) + P(3,2) + P(2,3) + P(1,4) = card({1|2|3|4}) + card({1|2|34, 1|3|24,1|4|23, 2|3|14, 2|4|13, 3|4|12}) + card({1|234, 2|134, 3|124, 4|123}) = 1 + 6 + 4 = 11.
This interpretation can be superimposed on the sequence by changing the offset to 1 and adding the value 1 in front. The triangle then starts
1;
1, 3;
1, 6, 4;
1, 10, 10, 5;
1, 15, 20, 15, 6;
...
(End)
Diagonal sums are A001924(n+1). - Philippe Deléham, Jan 11 2014
Relation to K-theory: T acting on the column vector (d,-d^2,d^3,...) generates the Euler classes for a hypersurface of degree d in CP^n. Cf. Dugger p. 168, A111492, A238363, and A135278. - Tom Copeland, Apr 11 2014
LINKS
Candice A. Marshall, Construction of Pseudo-Involutions in the Riordan Group, Dissertation, Morgan State University, 2017.
T. Saito, The discriminant and the determinant of a hypersurface of even dimension (p. 4), arXiv:1110.1717 [math.AG], 2011-2012.
FORMULA
a(n,k) = binomial(n,k), for 2 <= k <= n.
From Peter Bala, Jul 16 2013: (Start)
The following remarks assume an offset of 0.
Riordan array (1/(1 - x)^3, x/(1 - x)).
O.g.f.: 1/(1 - t)^2*1/(1 - (1 + x)*t) = 1 + (3 + x)*t + (6 + 4*x + x^2)*t^2 + ....
E.g.f.: (1/x*d/dt)^2 (exp(t)*(exp(x*t) - 1 - x*t) = 1 + (3 + x)*t + (6 + 4*x + x^2)*t^2/2! + ....
The infinitesimal generator for this triangle has the sequence [3,4,5,...] on the main subdiagonal and 0's elsewhere. (End)
As triangle T(n,k), 0<=k<=n: T(n,k) = 3*T(n-1,k) + T(n-1,k-1) - 3*T(n-2,k) - 2*T(n-2,k-1) + T(n-3,k) + T(n-3,k-1), T(0,0)=1, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Jan 11 2014
From Tom Copeland, Apr 11 2014: (Start)
A) The infinitesimal generator for this matrix is given in A132681 with m=2. See that entry for numerous relations to differential operators and the Laguerre polynomials of order m=2, i.e., Lag(n,t,2) = Sum_{j=0..n} binomial(n+2,n-j)*(-t)^j/j!.
B) O.g.f.: 1 / { [ 1 - t * x/(1-x) ] * (1-x)^3 }
C) O.g.f. of row e.g.f.s: exp[t*x/(1-x)]/(1-x)^3 = [Sum_{n>=0} x^n * Lag(n,-t,2)] = 1 + (3 + t)*x + (6 + 4t + t^2/2!)*x^2 + (10 + 10t + 5t^2/2! + t^3/3!)*x^3 + ....
D) E.g.f. of row o.g.f.s: [(1+t)*exp((1+t)*x) - (1+t+t*x)exp(x)]/t^2. (End)
O.g.f. for m-th row (m=n-2): [(1+x)^(m+2)-(1+(m+2)*x)]/x^2. - Tom Copeland, Apr 16 2014
Reverse T = [St2]*dP*[St1]- dP = [St2]*(exp(x*M)-I)*[St1]-(exp(x*M)-I) with top two rows of zeros removed, [St1]=padded A008275 just as [St2]=A048993=padded A008277, dP= A132440, M=A238385-I, and I=identity matrix. Cf. A238363. - Tom Copeland, Apr 26 2014
O.g.f. of column k (with k leading zeros): (x^k)/(1-x)^(k+1), k >= 2. - Wolfdieter Lang, Mar 20 2015
EXAMPLE
The triangle a(n, k) begins:
n\k 2 3 4 5 6 7 8 9 10 11 12 13
2: 1
3: 3 1
4: 6 4 1
5: 10 10 5 1
6: 15 20 15 6 1
7: 21 35 35 21 7 1
8: 28 56 70 56 28 8 1
9: 36 84 126 126 84 36 9 1
10: 45 120 210 252 210 120 45 10 1
11: 55 165 330 462 462 330 165 55 11 1
12: 66 220 495 792 924 792 495 220 66 12 1
13: 78 286 715 1287 1716 1716 1287 715 286 78 13 1
... reformatted. - Wolfdieter Lang, Mar 20 2015
MATHEMATICA
t[n_, k_] := Binomial[n, k]; Table[ t[n, k], {n, 2, 13}, {k, 2, n}] // Flatten (* Robert G. Wilson v, Apr 16 2011 *)
PROG
(PARI) for(n=2, 10, for(k=2, n, print1(binomial(n, k), ", "))) \\ G. C. Greubel, May 15 2018
(Magma) /* As triangle */ [[Binomial(n, k): k in [2..n]]: n in [2..10]]; // G. C. Greubel, May 15 2018
CROSSREFS
Cf. A000295, A007318, A008292, A104713, A027641/A027642 (first Bernoulli numbers B-), A164555/A027642 (second Bernoulli numbers B+), A176327/A176289.
Sequence in context: A185915 A086270 A325000 * A122177 A255874 A108286
KEYWORD
nonn,tabl,easy
AUTHOR
Gary W. Adamson, Mar 19 2005
EXTENSIONS
Edited and extended by David Wasserman, Jul 03 2007
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 13 10:53 EDT 2024. Contains 375904 sequences. (Running on oeis4.)