OFFSET
0,6
COMMENTS
Considering this sequence is a natural sequel to the investigation of the problem when F_n is divisible by n (the numbers occurring in A023172). This sequence has several nice properties. (1) n | m implies a(n) | a(m) for arbitrary naturals n and m. This property is a direct consequence of the analogous well-known property of Fibonacci numbers. (2) gcd (a(n), a(m)) = a(gcd(n, m)) for arbitrary naturals n and m. Also this property follows directly from the analogous (perhaps not so well-known) property of Fibonacci numbers. (3) a(n) * a(m) | a(n * m) for arbitrary naturals n and m. This property is remarkable especially in the light that the analogous proposition for Fibonacci numbers fails if n and m are not relatively prime (e.g. F_3 * F_3 does not divide F_9). (4) The set of numbers satisfying a(n) = n is closed w.r.t. multiplication. This follows easily from (3).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..20000 (first 1001 terms from T. D. Noe)
Paolo Leonetti, Carlo Sanna, On the greatest common divisor of n and the nth Fibonacci number, arXiv:1704.00151 [math.NT], 2017.
Carlo Sanna, Emanuele Tron, The density of numbers n having a prescribed G.C.D. with the nth Fibonacci number, arXiv:1705.01805 [math.NT], 2017.
FORMULA
a(n) = gcd(F(n), n).
EXAMPLE
The natural numbers: 0 1 2 3 4 5 6 7 8 9 10 11 12 ...
The Fibonacci numbers: 0 1 1 2 3 5 8 13 21 34 55 89 144 ...
The corresponding GCDs: 0 1 1 1 1 5 2 1 1 1 5 1 12 ...
MAPLE
b:= proc(n) option remember; local r, M, p; r, M, p:=
<<1|0>, <0|1>>, <<0|1>, <1|1>>, n;
do if irem(p, 2, 'p')=1 then r:= r.M mod n fi;
if p=0 then break fi; M:= M.M mod n
od; r[1, 2]
end:
a:= n-> igcd(n, b(n)):
seq(a(n), n=0..100); # Alois P. Heinz, Apr 05 2017
MATHEMATICA
Table[GCD[Fibonacci[n], n], {n, 0, 97}] (* Alonso del Arte, Nov 22 2010 *)
PROG
(Haskell) let fibs@(_ : fs) = 0 : 1 : zipWith (+) fibs fs in 0 : zipWith gcd [1 ..] fs
(PARI) a(n)=if(n, gcd(n, lift(Mod([1, 1; 1, 0], n)^n)[1, 2]), 0) \\ Charles R Greathouse IV, Sep 24 2013
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Harmel Nestra (harmel.nestra(AT)ut.ee), Apr 23 2005
STATUS
approved