Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #76 Feb 13 2022 23:18:02
%S 1,3,1,6,4,1,10,10,5,1,15,20,15,6,1,21,35,35,21,7,1,28,56,70,56,28,8,
%T 1,36,84,126,126,84,36,9,1,45,120,210,252,210,120,45,10,1,55,165,330,
%U 462,462,330,165,55,11,1,66,220,495,792,924,792,495,220,66,12,1,78,286,715
%N Pascal's triangle, with the first two columns removed.
%C A000295 (Eulerian numbers) gives the row sums.
%C Write A004736 and Pascal's triangle as infinite lower triangular matrices A and B; then A*B is this triangle.
%C From _Peter Luschny_, Apr 10 2011: (Start)
%C A slight variation has a combinatorial interpretation: remove the last column and the second one from Pascal's triangle. Let P(m, k) denote the set partitions of {1,2,..,n} with the following properties:
%C (a) Each partition has at least one singleton block;
%C (c) k is the size of the largest block of the partition;
%C (b) m = n - k + 1 is the number of parts of the partition.
%C Then A000295(n) = Sum_{k=1..n} card(P(n-k+1,k)).
%C For instance, A000295(4) = P(4,1) + P(3,2) + P(2,3) + P(1,4) = card({1|2|3|4}) + card({1|2|34, 1|3|24,1|4|23, 2|3|14, 2|4|13, 3|4|12}) + card({1|234, 2|134, 3|124, 4|123}) = 1 + 6 + 4 = 11.
%C This interpretation can be superimposed on the sequence by changing the offset to 1 and adding the value 1 in front. The triangle then starts
%C 1;
%C 1, 3;
%C 1, 6, 4;
%C 1, 10, 10, 5;
%C 1, 15, 20, 15, 6;
%C ...
%C (End)
%C Diagonal sums are A001924(n+1). - _Philippe Deléham_, Jan 11 2014
%C Relation to K-theory: T acting on the column vector (d,-d^2,d^3,...) generates the Euler classes for a hypersurface of degree d in CP^n. Cf. Dugger p. 168, A111492, A238363, and A135278. - _Tom Copeland_, Apr 11 2014
%H G. C. Greubel, <a href="/A104712/b104712.txt">Rows n=2..100 of triangle, flattened</a>
%H D. Dugger, <a href="http://math.uoregon.edu/~ddugger/kgeom.pdf">A Geometric Introduction to K-Theory</a>
%H Candice A. Marshall, <a href="https://mdsoar.org/handle/11603/10353">Construction of Pseudo-Involutions in the Riordan Group</a>, Dissertation, Morgan State University, 2017.
%H T. Saito, <a href="http://arxiv.org/abs/1110.1717">The discriminant and the determinant of a hypersurface of even dimension</a> (p. 4), arXiv:1110.1717 [math.AG], 2011-2012.
%F a(n,k) = binomial(n,k), for 2 <= k <= n.
%F From _Peter Bala_, Jul 16 2013: (Start)
%F The following remarks assume an offset of 0.
%F Riordan array (1/(1 - x)^3, x/(1 - x)).
%F O.g.f.: 1/(1 - t)^2*1/(1 - (1 + x)*t) = 1 + (3 + x)*t + (6 + 4*x + x^2)*t^2 + ....
%F E.g.f.: (1/x*d/dt)^2 (exp(t)*(exp(x*t) - 1 - x*t) = 1 + (3 + x)*t + (6 + 4*x + x^2)*t^2/2! + ....
%F The infinitesimal generator for this triangle has the sequence [3,4,5,...] on the main subdiagonal and 0's elsewhere. (End)
%F As triangle T(n,k), 0<=k<=n: T(n,k) = 3*T(n-1,k) + T(n-1,k-1) - 3*T(n-2,k) - 2*T(n-2,k-1) + T(n-3,k) + T(n-3,k-1), T(0,0)=1, T(n,k)=0 if k<0 or if k>n. - _Philippe Deléham_, Jan 11 2014
%F From _Tom Copeland_, Apr 11 2014: (Start)
%F A) The infinitesimal generator for this matrix is given in A132681 with m=2. See that entry for numerous relations to differential operators and the Laguerre polynomials of order m=2, i.e., Lag(n,t,2) = Sum_{j=0..n} binomial(n+2,n-j)*(-t)^j/j!.
%F B) O.g.f.: 1 / { [ 1 - t * x/(1-x) ] * (1-x)^3 }
%F C) O.g.f. of row e.g.f.s: exp[t*x/(1-x)]/(1-x)^3 = [Sum_{n>=0} x^n * Lag(n,-t,2)] = 1 + (3 + t)*x + (6 + 4t + t^2/2!)*x^2 + (10 + 10t + 5t^2/2! + t^3/3!)*x^3 + ....
%F D) E.g.f. of row o.g.f.s: [(1+t)*exp((1+t)*x) - (1+t+t*x)exp(x)]/t^2. (End)
%F O.g.f. for m-th row (m=n-2): [(1+x)^(m+2)-(1+(m+2)*x)]/x^2. - _Tom Copeland_, Apr 16 2014
%F Reverse T = [St2]*dP*[St1]- dP = [St2]*(exp(x*M)-I)*[St1]-(exp(x*M)-I) with top two rows of zeros removed, [St1]=padded A008275 just as [St2]=A048993=padded A008277, dP= A132440, M=A238385-I, and I=identity matrix. Cf. A238363. - _Tom Copeland_, Apr 26 2014
%F O.g.f. of column k (with k leading zeros): (x^k)/(1-x)^(k+1), k >= 2. - _Wolfdieter Lang_, Mar 20 2015
%e The triangle a(n, k) begins:
%e n\k 2 3 4 5 6 7 8 9 10 11 12 13
%e 2: 1
%e 3: 3 1
%e 4: 6 4 1
%e 5: 10 10 5 1
%e 6: 15 20 15 6 1
%e 7: 21 35 35 21 7 1
%e 8: 28 56 70 56 28 8 1
%e 9: 36 84 126 126 84 36 9 1
%e 10: 45 120 210 252 210 120 45 10 1
%e 11: 55 165 330 462 462 330 165 55 11 1
%e 12: 66 220 495 792 924 792 495 220 66 12 1
%e 13: 78 286 715 1287 1716 1716 1287 715 286 78 13 1
%e ... reformatted. - _Wolfdieter Lang_, Mar 20 2015
%t t[n_, k_] := Binomial[n, k]; Table[ t[n, k], {n, 2, 13}, {k, 2, n}] // Flatten (* _Robert G. Wilson v_, Apr 16 2011 *)
%o (PARI) for(n=2, 10, for(k=2,n, print1(binomial(n,k), ", "))) \\ _G. C. Greubel_, May 15 2018
%o (Magma) /* As triangle */ [[Binomial(n, k): k in [2..n]]: n in [2..10]]; // _G. C. Greubel_, May 15 2018
%Y Cf. A000295, A007318, A008292, A104713, A027641/A027642 (first Bernoulli numbers B-), A164555/A027642 (second Bernoulli numbers B+), A176327/A176289.
%K nonn,tabl,easy
%O 2,2
%A _Gary W. Adamson_, Mar 19 2005
%E Edited and extended by _David Wasserman_, Jul 03 2007