login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366735
Expansion of g.f. A(x) satisfying 0 = Sum_{n=-oo..+oo} x^n * A(x)^n * (1 + (-x)^(n-1))^(n+1).
7
1, 1, 4, 14, 54, 218, 911, 3917, 17235, 77251, 351498, 1619362, 7538944, 35412306, 167626988, 798823025, 3829325596, 18453005188, 89338777895, 434343634600, 2119679152092, 10379998771157, 50989711920778, 251194614740028, 1240735313801625, 6143268099066535
OFFSET
0,3
COMMENTS
a(n) = (-1)^n * Sum_{k=0..n} A366730(n,k) * (-1)^k for n >= 0.
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) 0 = Sum_{n=-oo..+oo} x^n * A(x)^n * (1 + (-x)^(n-1))^(n+1).
(2) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / ( A(x)^n * (1 + (-x)^(n+1))^(n-1) ).
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 14*x^3 + 54*x^4 + 218*x^5 + 911*x^6 + 3917*x^7 + 17235*x^8 + 77251*x^9 + 351498*x^10 + 1619362*x^11 + 7538944*x^12 + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);
A[#A] = polcoeff( sum(n=-#A, #A, x^n * Ser(A)^n * (1 + (-x)^(n-1))^(n+1) ), #A-2)); H=A; A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 29 2023
STATUS
approved