login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278620
Expansion of x/(1 - 99*x + 99*x^2 - x^3).
5
0, 1, 99, 9702, 950698, 93158703, 9128602197, 894509856604, 87652837344996, 8589083549953005, 841642535058049495, 82472379352138897506, 8081451533974553906094, 791899777950154143899707, 77598096787581131548265193, 7603821585405000737586089208, 745096917272902491151888477192
OFFSET
0,3
FORMULA
O.g.f.: x/((1 - x)*(1 - 98*x + x^2)).
E.g.f.: ((5-2*sqrt(6))*exp((5-2*sqrt(6))^2*x) + (5+2*sqrt(6))*exp((5+2*sqrt(6))^2*x) - 10*exp(x))/960.
a(n) = 99*a(n-1) - 99*a(n-2) + a(n-3) for n>2.
a(n) = 98*a(n-1) - a(n-2) + 1 for n>1.
a(n) = a(-n-1) = ((5+2*sqrt(6))^(2*n+1) + (5-2*sqrt(6))^(2*n+1))/960 - 1/96.
a(n) = floor((5+2*sqrt(6))^(2*n+1)/960).
a(n)*a(n-2) = a(n-1)*(a(n-1)-1) for n>1.
Lim_{i -> infinity} a(i)/a(i-1) = (5 + 2*sqrt(6))^2.
From the closed form: a(n) + a(-n) = A108741(n).
a(n) = A200993(n)/10 = A200994(n)/15.
a(n) = A123479(n)/20 for n>0.
a(n) = A045502(n)/40.
MAPLE
P:=proc(q) local a, b, c, n; a:=0; b:=1; print(a); print(b); for n from 1 to q do
c:=98*b-a+1; a:=b; b:=c; print(b); od; end: P(100); # Paolo P. Lava, Nov 30 2016
MATHEMATICA
CoefficientList[x/(1 - 99 x + 99 x^2 - x^3) + O[x]^20, x]
LinearRecurrence[{99, -99, 1}, {0, 1, 99}, 20] (* Harvey P. Dale, Aug 22 2020 *)
PROG
(PARI) concat(0, Vec(1/(1-99*x+99*x^2-x^3) + O(x^20)))
(Sage) gf = x/((1-x)*(1-98*x+x^2)); print(taylor(gf, x, 0, 20).list())
(Maxima) makelist(coeff(taylor(x/((1-x)*(1-98*x+x^2)), x, 0, n), x, n), n, 0, 20);
CROSSREFS
First differences: A173205.
Sequence in context: A093233 A213155 A046173 * A171415 A327926 A098609
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Nov 24 2016
STATUS
approved