The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A108741 Member r=100 of the family of Chebyshev sequences S_r(n) defined in A092184. 19
 0, 1, 100, 9801, 960400, 94109401, 9221760900, 903638458801, 88547347201600, 8676736387298001, 850231618608002500, 83314021887196947001, 8163923913326692803600, 799981229484128697805801, 78389996565531285692164900, 7681419682192581869134354401, 752700738858307491889474566400 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Partial sums of A046173. [Joerg Arndt, Jun 10 2013] LINKS Index entries for linear recurrences with constant coefficients, signature (99,-99,1). FORMULA a(n) = ((49+20*sqrt(6))^n+(49-20*sqrt(6))^n -2)/96 = 98*a(n-1)-a(n-2)+2 = 99*a(n-1)-99*a(n-2)+a(n-3) = (a(n-1)-1)^2/a(n-2) = A004189(n)^2. G.f.: -x*(x+1)/((x-1)*(x^2-98*x+1)). [Colin Barker, Oct 24 2012] From Wolfdieter Lang, Feb 01 2016: (Start) a(n) = (T(n, 49) - 1)/48 = (T(2*n, 5) - 1)/48 with Chebyshev's T polynomials A053120. See the name. a(n) = A000217((T(n, 5) - 1)/2)/3. n >= 0. a(n) = S(n-1, 10)^2 = A004189(n)^2, with Chebyshev's S polynomials A049310. This is the triangular number = 3*square number identity. Cf. the famous triangular number = square number identity: A000217((T(n, 3) - 1)/2) = S(n-1, 6)^2. A001109 and A001110. (End) MATHEMATICA LinearRecurrence[{99, -99, 1}, {0, 1, 100}, 20] (* Vincenzo Librandi, Feb 02 2016 *) PROG (MAGMA) I:=[0, 1, 100]; [n le 3 select I[n] else 99*Self(n-1)-99*Self(n-2)+Self(n-3): n in [1..20]]; // Vincenzo Librandi, Feb 02 2016 CROSSREFS Cf. A000217, A004189. Sequence in context: A260859 A117687 A262806 * A192937 A029798 A029775 Adjacent sequences:  A108738 A108739 A108740 * A108742 A108743 A108744 KEYWORD nonn,easy AUTHOR Henry Bottomley, Jun 22 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 11 18:00 EDT 2021. Contains 342888 sequences. (Running on oeis4.)