login
A108738
a(n) = n/(smallest odd prime divisor of n), if any.
2
1, 2, 1, 4, 1, 2, 1, 8, 3, 2, 1, 4, 1, 2, 5, 16, 1, 6, 1, 4, 7, 2, 1, 8, 5, 2, 9, 4, 1, 10, 1, 32, 11, 2, 7, 12, 1, 2, 13, 8, 1, 14, 1, 4, 15, 2, 1, 16, 7, 10, 17, 4, 1, 18, 11, 8, 19, 2, 1, 20, 1, 2, 21, 64, 13, 22, 1, 4, 23, 14, 1, 24, 1, 2, 25, 4, 11, 26, 1, 16, 27, 2, 1, 28, 17, 2, 29, 8, 1
OFFSET
1,2
COMMENTS
a(n) = n if n has no odd prime divisor, i.e. for n = 2^k (k>=0).
LINKS
Z. Nedev and S. Muthukrishnan, The Nagger-Mover Game, DIMACS Tech. Report 2005-22.
FORMULA
a(n) = n/A078701(n).
EXAMPLE
a(21) = 21/3 = 7.
MAPLE
with(numtheory): a:=proc(n) local nn: nn:=factorset(n): if n=1 then 1 elif nn={2} then n elif nn[1]=2 then n/nn[2] else n/nn[1] fi end: seq(a(n), n=1..100); # Emeric Deutsch, Jun 24 2005
MATHEMATICA
f[n_] := If[IntegerQ@Log[2, n], n, pf = First /@ FactorInteger@n; If[ EvenQ@n, n/pf[[2]], n/pf[[1]] ]]; Array[f, 89] (* Robert G. Wilson v, Sep 02 2006 *)
PROG
(PARI) a(n) = my(v = select(x->((x%2)==1), factor(n)[, 1])); n/if (#v, vecmin(v), 1); \\ Michel Marcus, Oct 25 2017
(PARI) first(n) = {my(res = vector(n, i, i)); forprime(p = 3, n, for(k = 1, n\p, if(res[k*p] == k*p, res[k*p]\=p))); res} \\ David A. Corneth, Oct 25 2017
CROSSREFS
Sequence in context: A325566 A218621 A079891 * A064405 A235872 A100762
KEYWORD
nonn,easy
AUTHOR
S. Muthukrishnan (muthu(AT)research.att.com), Jun 23 2005
EXTENSIONS
More terms from Emeric Deutsch and Reinhard Zumkeller, Jun 24 2005
STATUS
approved