login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A235872
Number of solutions to the equation x^2=0 in the ring of Gaussian integers modulo n.
1
1, 2, 1, 4, 1, 2, 1, 8, 9, 2, 1, 4, 1, 2, 1, 16, 1, 18, 1, 4, 1, 2, 1, 8, 25, 2, 9, 4, 1, 2, 1, 32, 1, 2, 1, 36, 1, 2, 1, 8, 1, 2, 1, 4, 9, 2, 1, 16, 49, 50, 1, 4, 1, 18, 1, 8, 1, 2, 1, 4, 1, 2, 9, 64, 1, 2, 1, 4, 1, 2, 1, 72, 1, 2, 25, 4, 1, 2, 1, 16, 81, 2
OFFSET
1,2
COMMENTS
Numbers of solutions to x^2 == y^2 (mod n), 2*x*y == 0 (mod n). - Andrew Howroyd, Aug 06 2018
LINKS
FORMULA
Multiplicative with a(2^e) = 2^e, a(p^e) = p^(2*floor(e/2)). - Andrew Howroyd, Aug 06 2018
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = (2/21)*(3+sqrt(2))*zeta(3/2)/zeta(3) = 0.91363892007.... - Amiram Eldar, Nov 13 2022
MATHEMATICA
invoG[n_] := invoG[n] = Sum[If[Mod[(x + I y)^2, n] == 0, 1, 0], {x, 0, n - 1}, {y, 0, n - 1}]; Table[invoG[n], {n, 1, 104}]
f[p_, e_] := p^(2*Floor[e/2]); f[2, e_] := 2^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 13 2022 *)
PROG
(PARI) a(n)={sum(i=0, n-1, sum(j=0, n-1, (i^2 - j^2)%n == 0 && 2*i*j%n == 0))} \\ Andrew Howroyd, Aug 06 2018
(PARI) a(n)={my(f=factor(n)); prod(i=1, #f~, my([p, e]=f[i, ]); p^if(p==2, e, e - e%2))} \\ Andrew Howroyd, Aug 06 2018
CROSSREFS
Sequence in context: A079891 A108738 A064405 * A100762 A059147 A091891
KEYWORD
nonn,mult
AUTHOR
STATUS
approved