login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A235871
Primes p such that p+2, p+24 and p+246 are also primes.
1
5, 17, 107, 617, 857, 1277, 1487, 2087, 3167, 3557, 4217, 6947, 7457, 7877, 10067, 12917, 13217, 14387, 15137, 17657, 20897, 21317, 22367, 22697, 27407, 27527, 27917, 28547, 29207, 29387, 30467, 31727, 32117, 33287, 33617, 35507, 36107, 47657, 49367, 49787
OFFSET
1,1
COMMENTS
All the terms in the sequence are congruent to 5 mod 6.
The constants in the definition (2, 24 and 246) are the concatenation of first even digits 2,4 and 6.
LINKS
EXAMPLE
a(2) = 17 is a prime: 17+2 = 19, 17+24 = 41 and 17+246 = 263 are also prime.
a(3) = 107 is a prime: 107+2 = 119, 107+24 = 131 and 107+246 = 353 are also prime.
MAPLE
KD:= proc() local a, b, d, e; a:= ithprime(n); b:=a+2; d:=a+24; e:=a+246; if isprime(b) and isprime(d) and isprime(e) then return (a) :fi; end: seq(KD(), n=1..15000);
MATHEMATICA
KD = {}; Do[p = Prime[n]; If[PrimeQ[p + 2] && PrimeQ[p + 24] && PrimeQ[p + 246], AppendTo[KD, p]], {n, 15000}]; KD
c = 0; p = Prime[n]; Do[If[PrimeQ[p + 2] && PrimeQ[p + 24] && PrimeQ[p + 246], c = c + 1; Print[c, " ", Prime[n]]], {n, 1, 5000000}]; (* b - file *)
PROG
(PARI) s=[]; forprime(p=2, 50000, if(isprime(p+2) && isprime(p+24) && isprime(p+246), s=concat(s, p))); s \\ Colin Barker, Apr 21 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Apr 21 2014
STATUS
approved