OFFSET
0,3
FORMULA
G.f. satisfies: A(x) + A(-x) = 1 + (1+x^2)*A(x)*A(-x).
G.f. satisfies: A(x) = Sum_{n>=0} x^n * A(x)^(2*n) / A(-x)^(2*n).
G.f. satisfies: A(x) = exp( Sum_{n>=1} A(x)^(2*n)/A(-x)^(2*n) * x^n/n ).
G.f.: A(x) = G(x)/(1+x^2) where G(x) = 1 + x*G(x)^3/G(-x)^3 is the g.f. of A143556.
EXAMPLE
G.f. A(x) = 1 + x + 5*x^2 + 17*x^3 + 105*x^4 + 481*x^5 + 3261*x^6 +...
A(x)*A(-x) = 1 + 9*x^2 + 201*x^4 + 6321*x^6 + 233073*x^8 +...
PROG
(PARI) {a(n)=local(A=1+x*O(x^n)); for(i=0, n, A=1+x*A^3/subst(A^2, x, -x)); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 24 2008
STATUS
approved