login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143559 G.f. satisfies: A(x) = 1 + x*A(x)^6/A(-x)^6. 4
1, 1, 12, 72, 1012, 9552, 148764, 1609496, 26398020, 305821344, 5174354988, 62479377384, 1079265357204, 13399747245040, 234917433809724, 2975608178304696, 52748683164797668, 678307369324850496 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
FORMULA
G.f. satisfies: A(x) = 1 + x^2/(1 - A(-x)).
G.f. satisfies: A(x) = 1 + x^2 + x*A(x)^6/A(-x)^5.
G.f. satisfies: (A(x) - 1)^5 = ( 1 - (1+x^2)/A(x) )^6/x = x^5*A(x)^30/A(-x)^30.
G.f.: A(x) = (1+x^2)*G(x) where G(x) = 1 + x*G(x)^6/G(-x)^5.
EXAMPLE
G.f. A(x) = 1 + x + 12*x^2 + 72*x^3 + 1012*x^4 + 9552*x^5 + 148764*x^6 +...
A(x)/A(-x) = 1 + 2*x + 2*x^2 + 122*x^3 + 242*x^4 + 16002*x^5 + 38962*x^6 +...
A(x)^5/A(-x)^5 = 1 + 10*x + 50*x^2 + 770*x^3 + 6450*x^4 + 109802*x^5 +...
where 1 - (1+x^2)/A(x) = x*A(x)^5/A(-x)^5.
PROG
(PARI) {a(n)=local(A=1+x*O(x^n)); for(i=0, n, A=1+x*A^6/subst(A^6, x, -x)); polcoeff(A, n)}
CROSSREFS
Sequence in context: A320660 A367700 A108734 * A341542 A120793 A120783
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 24 2008
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 08:46 EST 2023. Contains 367722 sequences. (Running on oeis4.)