The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143558 G.f. satisfies: A(x) = 1 + x*A(x)^5/A(-x)^5. 4
1, 1, 10, 50, 570, 4450, 56202, 501970, 6676410, 63799490, 875391370, 8715058802, 122088479930, 1249437863970, 17764858122250, 185445650940690, 2666213981716282, 28252030821781890, 409717783914784010 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
FORMULA
G.f. satisfies: A(x) = 1 + x^2/(1 - A(-x)).
G.f. satisfies: A(x) = 1 + x^2 + x*A(x)^5/A(-x)^4.
G.f. satisfies: (A(x) - 1)^4 = ( 1 - (1+x^2)/A(x) )^5/x = x^4*A(x)^20/A(-x)^20.
G.f.: A(x) = (1+x^2)*G(x) where G(x) = 1 + x*G(x)^5/G(-x)^4.
EXAMPLE
G.f. A(x) = 1 + x + 10*x^2 + 50*x^3 + 570*x^4 + 4450*x^5 + 56202*x^6 +...
A(x)/A(-x) = 1 + 2*x + 2*x^2 + 82*x^3 + 162*x^4 + 7202*x^5 + 17442*x^6 +...
A(x)^4/A(-x)^4 = 1 + 8*x + 32*x^2 + 408*x^3 + 2752*x^4 + 38760*x^5 +...
where 1 - (1+x^2)/A(x) = x*A(x)^4/A(-x)^4.
PROG
(PARI) {a(n)=local(A=1+x*O(x^n)); for(i=0, n, A=1+x*A^5/subst(A^5, x, -x)); polcoeff(A, n)}
CROSSREFS
Sequence in context: A223161 A216156 A072296 * A106041 A370737 A264044
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 24 2008
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 13 00:51 EDT 2024. Contains 373362 sequences. (Running on oeis4.)