|
|
A001078
|
|
a(n) = 10*a(n-1) - a(n-2) with a(0) = 0, a(1) = 2.
(Formerly M2122 N0839)
|
|
16
|
|
|
0, 2, 20, 198, 1960, 19402, 192060, 1901198, 18819920, 186298002, 1844160100, 18255302998, 180708869880, 1788833395802, 17707625088140, 175287417485598, 1735166549767840, 17176378080192802, 170028614252160180, 1683109764441408998
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
This sequence has the following property: For each n, if A = a(n), B = 2*a(n+1), C = 3*a(n+1) then A*B+1, A*C+1, B*C+1 are perfect squares. - Deshpande M.N. (dpratap_ngp(AT)sancharnet.in), Sep 22 2004
n such that 6*n^2 = floor(sqrt(6)*n*ceiling(sqrt(6)*n)). - Benoit Cloitre, May 10 2003
|
|
REFERENCES
|
O. Bottema: Verscheidenheden XXVI. Het vraagstuk van Malfatti, Euclides 25 (1949-50), pp. 144-149 [in Dutch].
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (pp. 283, 302, P_{16}).
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
V. Thébault, Les Récréations Mathématiques. Gauthier-Villars, Paris, 1952, p. 281.
|
|
LINKS
|
O. Bottema, The Malfatti problem (translation of Het vraagstuk van Malfatti), Forum Geom. 1 (2001) 43-50.
|
|
FORMULA
|
a(n) = ((5 + 2*sqrt(6))^n - (5 - 2*sqrt(6))^n)/(2*sqrt(6)).
G.f.: 2*z/(1 - 10*z + z^2). (End)
a(-n) = -a(n).
a(n) = 9*(a(n-1) + a(n-2)) - a(n-3).
a(n) = 11*(a(n-1) - a(n-2)) + a(n-3). (End)
E.g.f.: 2*exp(5*x)*sinh(2*sqrt(6)*x)/(2*sqrt(6)). - Stefano Spezia, May 16 2023
|
|
MAPLE
|
A001078 := proc(n) option remember; if n=0 then 0 elif n=1 then 2 else 10*A001078(n-1)-A001078(n-2); fi; end;
|
|
MATHEMATICA
|
a[0]=0; a[1]=2; a[n_] := a[n] = 10*a[n-1] - a[n-2]; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Mar 18 2011 *)
LinearRecurrence[{10, -1}, {0, 2}, 20] (* Harvey P. Dale, Jun 23 2011 *)
CoefficientList[Series[2*x/(1 - 10*x + x^2), {x, 0, 50}], x] (* G. C. Greubel, Dec 19 2017 *)
|
|
PROG
|
(PARI) nxsqp1(m, n) = { for(x=1, m, y = n*x*x+1; if(issquare(y), print1(x" ")) ) }
(PARI) a(n)=imag((5+2*quadgen(24))^n) /* Michael Somos, Jul 05 2005 */
(PARI) a(n)=subst(poltchebi(n+1)-5*poltchebi(n), x, 5)/12 /* Michael Somos, Jul 05 2005 */
(Haskell)
a001078 n = a001078_list !! n
a001078_list =
0 : 2 : zipWith (-) (map (10*) $ tail a001078_list) a001078_list
(PARI) x='x+O('x^30); concat([0], Vec(2*x/(1 - 10*x + x^2))) \\ G. C. Greubel, Dec 19 2017
(Magma) I:=[0, 2]; [n le 2 select I[n] else 10*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 19 2017
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy,nice
|
|
AUTHOR
|
|
|
EXTENSIONS
|
Thanks to Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr) and Floor van Lamoen for the Bottema references.
|
|
STATUS
|
approved
|
|
|
|