Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M2122 N0839 #97 May 16 2024 15:44:40
%S 0,2,20,198,1960,19402,192060,1901198,18819920,186298002,1844160100,
%T 18255302998,180708869880,1788833395802,17707625088140,
%U 175287417485598,1735166549767840,17176378080192802,170028614252160180,1683109764441408998
%N a(n) = 10*a(n-1) - a(n-2) with a(0) = 0, a(1) = 2.
%C Also 6*x^2+1 is a square. - _Cino Hilliard_, Mar 08 2003
%C This sequence has the following property: For each n, if A = a(n), B = 2*a(n+1), C = 3*a(n+1) then A*B+1, A*C+1, B*C+1 are perfect squares. - Deshpande M.N. (dpratap_ngp(AT)sancharnet.in), Sep 22 2004
%C n such that 6*n^2 = floor(sqrt(6)*n*ceiling(sqrt(6)*n)). - _Benoit Cloitre_, May 10 2003
%C Kekulé numbers for certain benzenoids. - _Emeric Deutsch_, Jun 19 2005
%C (sqrt(2) + sqrt(3))^(2*n) = A001079(n) + a(n)*sqrt(6); a(n) = A054320(n) + A138288(n). - _Reinhard Zumkeller_, Mar 12 2008
%C Numbers m such that A000217(m) plus A000326(m) equals an octagonal number (A000567). For a(3)=198, A000217(198)=19701, A000326(198)=58707, therefore 19701 + 58707 = 78408 = A000567(162). - _Bruno Berselli_, Apr 15 2013
%D O. Bottema: Verscheidenheden XXVI. Het vraagstuk van Malfatti, Euclides 25 (1949-50), pp. 144-149 [in Dutch].
%D S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (pp. 283, 302, P_{16}).
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D V. Thébault, Les Récréations Mathématiques. Gauthier-Villars, Paris, 1952, p. 281.
%H G. C. Greubel, <a href="/A001078/b001078.txt">Table of n, a(n) for n = 0..1000</a> (terms 0..100 from T. D. Noe)
%H Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL23/Nemeth/nemeth7.html">Ellipse Chains and Associated Sequences</a>, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
%H O. Bottema, <a href="http://forumgeom.fau.edu/FG2001volume1/FG200107index.html">The Malfatti problem</a> (translation of Het vraagstuk van Malfatti), Forum Geom. 1 (2001) 43-50.
%H O. Bottema, <a href="/malfatti.html">Het Vraagstuk Van Malfatti</a>, from Euclides.
%H L. Euler, <a href="http://math.dartmouth.edu/~euler/pages/E029.html">De solutione problematum diophanteorum per numeros integros</a>, par. 18.
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>.
%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10,-1).
%F From _Emeric Deutsch_, Jun 19 2005: (Start)
%F a(n) = ((5 + 2*sqrt(6))^n - (5 - 2*sqrt(6))^n)/(2*sqrt(6)).
%F G.f.: 2*z/(1 - 10*z + z^2). (End)
%F a(-n) = -a(n).
%F From _Mohamed Bouhamida_, Sep 20 2006: (Start)
%F a(n) = 9*(a(n-1) + a(n-2)) - a(n-3).
%F a(n) = 11*(a(n-1) - a(n-2)) + a(n-3). (End)
%F a(n+1) = A054320(n) + A138288(n). - _Reinhard Zumkeller_, Mar 12 2008
%F a(n) = sinh(2n*arcsinh(sqrt(2)))/sqrt(6). - _Herbert Kociemba_, Apr 24 2008
%F a(n) = 2*A004189(n). - _R. J. Mathar_, Oct 26 2009
%F E.g.f.: 2*exp(5*x)*sinh(2*sqrt(6)*x)/(2*sqrt(6)). - _Stefano Spezia_, May 16 2023
%p A001078 := proc(n) option remember; if n=0 then 0 elif n=1 then 2 else 10*A001078(n-1)-A001078(n-2); fi; end;
%p A001078:=2*z/(1-10*z+z**2); # conjectured by _Simon Plouffe_ in his 1992 dissertation
%t a[0]=0; a[1]=2; a[n_] := a[n] = 10*a[n-1] - a[n-2]; Table[a[n],{n,0,19}] (* _Jean-François Alcover_, Mar 18 2011 *)
%t LinearRecurrence[{10,-1},{0,2},20] (* _Harvey P. Dale_, Jun 23 2011 *)
%t CoefficientList[Series[2*x/(1 - 10*x + x^2), {x, 0, 50}], x] (* _G. C. Greubel_, Dec 19 2017 *)
%o (PARI) nxsqp1(m,n) = { for(x=1,m, y = n*x*x+1; if(issquare(y),print1(x" ")) ) }
%o (PARI) a(n)=imag((5+2*quadgen(24))^n) /* _Michael Somos_, Jul 05 2005 */
%o (PARI) a(n)=subst(poltchebi(n+1)-5*poltchebi(n),x,5)/12 /* _Michael Somos_, Jul 05 2005 */
%o (Haskell)
%o a001078 n = a001078_list !! n
%o a001078_list =
%o 0 : 2 : zipWith (-) (map (10*) $ tail a001078_list) a001078_list
%o -- _Reinhard Zumkeller_, Mar 18 2011
%o (PARI) x='x+O('x^30); concat([0], Vec(2*x/(1 - 10*x + x^2))) \\ _G. C. Greubel_, Dec 19 2017
%o (Magma) I:=[0, 2]; [n le 2 select I[n] else 10*Self(n-1) - Self(n-2): n in [1..30]]; // _G. C. Greubel_, Dec 19 2017
%Y Cf. A000217, A000326, A000567, A001079, A004189, A053410, A054320, A138281, A138288.
%K nonn,easy,nice
%O 0,2
%A _N. J. A. Sloane_
%E Thanks to Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr) and _Floor van Lamoen_ for the Bottema references.