The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A053410 a(1) = 0, a(2) = 16, a(2n+1) = 10*a(2n) - a(2n-1), a(2n) = 10*a(2n-1) - a(2n-2) + 16. 2
 0, 16, 160, 1600, 15840, 156816, 1552320, 15366400, 152111680, 1505750416, 14905392480, 147548174400, 1460576351520, 14458215340816, 143121577056640, 1416757555225600, 14024453975199360, 138827782196768016 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES O. Bottema: Verscheidenheden XXVI. Het vraagstuk van Malfatti, Euclides 25 (1949-50), pp. 144-149. [in Dutch]. O. Bottema, The Malfatti problem (translation of Het vraagstuk van Malfatti), Forum Geom. 1 (2001) 43-50. LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 Bottema article in Forum Geometricorum Bottema article, from Euclides Index entries for linear recurrences with constant coefficients, signature (10,0,-10,1). FORMULA a(n) = 10*a(n-1) - 10*a(n-3) + a(n-4). G.f.: -16*x^2/((x-1)*(x+1)*(x^2-10*x+1)). - Colin Barker, Jun 24 2012 MATHEMATICA LinearRecurrence[{10, 0, -10, 1}, {0, 16, 160, 1600}, 50] (* G. C. Greubel, May 25 2018 *) PROG (PARI) x='x+O('x^30); concat([0], Vec(-16*x^2/((x-1)*(x+1)*(x^2-10*x+1)))) \\ G. C. Greubel, May 25 2018 (Magma) I:=[0, 16, 160, 1600]; [n le 4 select I[n] else 10*Self(n-1) - 10*Self(n-3) +Self(n-4): n in [1..30]]; // G. C. Greubel, May 25 2018 CROSSREFS Cf. A001078. Sequence in context: A038846 A079767 A079768 * A225591 A197677 A197535 Adjacent sequences: A053407 A053408 A053409 * A053411 A053412 A053413 KEYWORD easy,nonn AUTHOR Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), Jan 09 2000 EXTENSIONS More terms from James A. Sellers, Jan 10 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 12 18:44 EDT 2024. Contains 375113 sequences. (Running on oeis4.)