login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053409
Fibonacci numbers which are semiprimes.
14
21, 34, 55, 377, 4181, 17711, 121393, 1346269, 5702887, 165580141, 53316291173, 956722026041, 2504730781961, 308061521170129, 806515533049393, 14472334024676221, 1779979416004714189, 19740274219868223167, 573147844013817084101, 10284720757613717413913
OFFSET
1,1
COMMENTS
Subsequence of A006881, since the only square Fibonacci numbers are 1 and 144. - Charles R Greathouse IV, Sep 24 2012
Apart from a(1) = 21, all terms are of the form F(p), F(2p), or F(p^2) where F(n) is the n-th Fibonacci number. - Charles R Greathouse IV, Oct 06 2016
LINKS
FORMULA
a(n) = A000045(A072381(n)).
MATHEMATICA
Select[Fibonacci@Range[120], Last/@FactorInteger[#]=={1, 1}&] (* Vladimir Joseph Stephan Orlovsky, Jan 29 2012 *)
Select[Fibonacci[Range[150]], PrimeOmega[#]==2&] (* Harvey P. Dale, Jun 26 2020 *)
PROG
(PARI) issemi(n)=bigomega(n)==2
list(lim)=my(v=List([21]), F, t); forprime(p=2, , F=fibonacci(p); if(F>lim, break); if(issemi(F), listput(v, F))); forprime(p=2, , F=fibonacci(p^2); if(F>lim, break); if(isprime(t=fibonacci(p)) && isprime(F/t), listput(v, F))); forprime(p=2, , F=fibonacci(2*p); if(F>lim, break); if(isprime(t=fibonacci(p)) && isprime(F/t), listput(v, F))); Set(v) \\ Charles R Greathouse IV, Oct 06 2016
CROSSREFS
Column k=2 of A303216.
Sequence in context: A135595 A082483 A075735 * A253910 A144205 A261408
KEYWORD
nonn
AUTHOR
G. L. Honaker, Jr., Jan 09 2000
STATUS
approved