login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A351651 a(n) is the quotient obtained when digsum(m^2) is divided by digsum(m), with digsum = sum of digits = A007953 and m = A351650(n). 1
1, 2, 3, 1, 1, 2, 3, 4, 1, 1, 2, 3, 4, 3, 2, 3, 4, 3, 2, 3, 1, 1, 2, 1, 3, 2, 2, 2, 1, 2, 1, 1, 2, 3, 4, 2, 2, 3, 4, 5, 3, 3, 4, 5, 3, 3, 2, 4, 3, 2, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 2, 3, 4, 3, 3, 2, 3, 4, 5, 3, 2, 4, 5, 2, 2, 3, 3, 3, 3, 2, 2, 2, 3, 2, 1, 3, 4, 3, 4, 5 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
All positive integers are terms of this sequence (see A280012).
a(n) = 1 iff m = A351650(n) is a term of A058369 \ {0}.
a(n) = digsum(n) if m = A351650(n) is a term of A061909 \ {0}.
LINKS
FORMULA
a(n) = A004159(A351650(n)) / A007953(A351650(n)).
EXAMPLE
A351650(8) = 13, then digsum(13) = 1+3 = 4 while digsum(13^2) = digsum(169) = 1+6+9 = 16; hence, a(8) = 16/4 = 4.
MATHEMATICA
Select[Total[IntegerDigits[#^2]]/Total[IntegerDigits[#]]& /@ Range[300], IntegerQ] (* Amiram Eldar, Feb 16 2022 *)
PROG
(PARI) lista(nn) = {my(list = List(), q); for (n=1, nn, if (denominator(q=sumdigits(n^2)/sumdigits(n))==1, listput(list, q)); ); Vec(list); } \\ Michel Marcus, Feb 16 2022
CROSSREFS
Sequence in context: A330957 A352924 A327192 * A157813 A111879 A193280
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Feb 16 2022
EXTENSIONS
More terms from Michel Marcus, Feb 16 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 12 09:47 EDT 2024. Contains 375850 sequences. (Running on oeis4.)