The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A183953 T(n,k) is the number of strings of numbers x(i=1..n) in 0..k with sum i^2*x(i) equal to k*n^2. 17
 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 3, 4, 5, 1, 1, 2, 4, 8, 10, 7, 2, 1, 2, 6, 14, 27, 26, 10, 1, 1, 3, 7, 21, 53, 78, 61, 20, 3, 1, 3, 9, 32, 94, 180, 219, 147, 37, 3, 1, 3, 12, 48, 161, 398, 656, 649, 339, 77, 4, 1, 3, 14, 61, 259, 770, 1613, 2195, 1805, 771, 118, 2, 1, 4, 17 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,9 COMMENTS T(n,k) is the number of integer lattice points in k*C(n) where C(n) is the polytope in R^n defined by the equation Sum_{1<=i<=n} i^2*x_i = n^2 and the inequalities 0 <= x_i <= 1. The vertices of the polytope have rational coordinates. Thus row n of the table is an Ehrhart quasi-polynomial of degree n-1. - Robert Israel, Jul 10 2019 LINKS R. H. Hardin, Table of n, a(n) for n = 1..806 EXAMPLE Table starts .1..1...1....1.....1.....1......1......1.......1.......1.......1........1 .1..1...1....2.....2.....2......2......3.......3.......3.......3........4 .1..2...2....3.....4.....6......7......9......12......14......17.......19 .1..1...4....8....14....21.....32.....48......61......82.....108......139 .2..5..10...27....53....94....161....259.....399.....578.....811.....1120 .1..7..26...78...180...398....770...1387....2330....3738....5772.....8599 .2.10..61..219...656..1613...3539...7099...13225...23247...38938....62599 .1.20.147..649..2195..6301..15601..34847...71509..137520..249799...433038 .3.37.339.1805..7250.23611..65909.163588..369777..775045.1525468..2847243 .3.77.771.4987.23044.85595.268008.737538.1830390.4178324.8894137.17852441 Some solutions for n=5 ..4....1....3....0....4....4....0....3....1....3....0....0....0....2....1....0 ..3....2....1....0....3....3....0....1....2....1....4....4....0....4....2....4 ..3....0....2....1....2....4....4....3....1....4....2....1....0....1....3....4 ..2....1....0....1....1....3....4....1....2....2....1....0....0....3....4....3 ..1....3....3....3....2....0....0....2....2....1....2....3....4....1....0....0 MAPLE A183953rec := proc(n, k, s) option remember; local c; if s < 0 then return 0 ; elif n = 0 then if s =0 then return 1; else return 0 ; end if; else add( procname(n-1, k, s-c*n^2), c=0..k) ; end if; end proc: A183953 := proc(n, k) A183953rec(n, k, k*n^2) ; end proc: seq(seq( A183953(n, d-n), n=1..d-1), d=2..12) ; # R. J. Mathar, Mar 08 2021 MATHEMATICA r[n_, k_, s_] := r[n, k, s] = Which[s < 0, 0, n == 0, If[s == 0, 1, 0], True, Sum[r[n-1, k, s-c*n^2], {c, 0, k}]]; T[n_, k_] := r[n, k, k*n^2]; Table[Table[T[n, d-n], {n, 1, d-1}], {d, 2, 14}] // Flatten (* Jean-François Alcover, Jul 22 2022, after R. J. Mathar *) CROSSREFS Column 1 is A030273. A183946 (column 2), A183947 (column 3), A183954 (row 3), A183955 (row 4). Sequence in context: A091954 A325167 A213408 * A080236 A351450 A221646 Adjacent sequences: A183950 A183951 A183952 * A183954 A183955 A183956 KEYWORD nonn,tabl AUTHOR R. H. Hardin, Jan 08 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 03:50 EDT 2024. Contains 373432 sequences. (Running on oeis4.)