login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A183953 T(n,k) is the number of strings of numbers x(i=1..n) in 0..k with sum i^2*x(i) equal to k*n^2. 17
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 3, 4, 5, 1, 1, 2, 4, 8, 10, 7, 2, 1, 2, 6, 14, 27, 26, 10, 1, 1, 3, 7, 21, 53, 78, 61, 20, 3, 1, 3, 9, 32, 94, 180, 219, 147, 37, 3, 1, 3, 12, 48, 161, 398, 656, 649, 339, 77, 4, 1, 3, 14, 61, 259, 770, 1613, 2195, 1805, 771, 118, 2, 1, 4, 17 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,9

COMMENTS

Table starts

.1..1...1....1.....1.....1......1......1.......1.......1.......1........1

.1..1...1....2.....2.....2......2......3.......3.......3.......3........4

.1..2...2....3.....4.....6......7......9......12......14......17.......19

.1..1...4....8....14....21.....32.....48......61......82.....108......139

.2..5..10...27....53....94....161....259.....399.....578.....811.....1120

.1..7..26...78...180...398....770...1387....2330....3738....5772.....8599

.2.10..61..219...656..1613...3539...7099...13225...23247...38938....62599

.1.20.147..649..2195..6301..15601..34847...71509..137520..249799...433038

.3.37.339.1805..7250.23611..65909.163588..369777..775045.1525468..2847243

.3.77.771.4987.23044.85595.268008.737538.1830390.4178324.8894137.17852441

T(n,k) is the number of integer lattice points in k*C(n) where C(n) is the polytope in R^n defined by the equation Sum_{1<=i<=n} i^2*x_i = n^2 and the inequalities 0 <= x_i <= 1.  The vertices of the polytope have rational coordinates.  Thus row n of the table is an Ehrhart quasi-polynomial of degree n-1. - Robert Israel, Jul 10 2019

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..806

EXAMPLE

Some solutions for n=5

..4....1....3....0....4....4....0....3....1....3....0....0....0....2....1....0

..3....2....1....0....3....3....0....1....2....1....4....4....0....4....2....4

..3....0....2....1....2....4....4....3....1....4....2....1....0....1....3....4

..2....1....0....1....1....3....4....1....2....2....1....0....0....3....4....3

..1....3....3....3....2....0....0....2....2....1....2....3....4....1....0....0

MAPLE

A183953rec := proc(n, k, s)

    option remember;

    local c;

    if s < 0 then

        return 0 ;

    elif n = 0 then

        if s =0 then

            return 1;

        else

            return 0 ;

        end if;

    else

        add( procname(n-1, k, s-c*n^2), c=0..k) ;

    end if;

end proc:

A183953 := proc(n, k)

    A183953rec(n, k, k*n^2) ;

end proc:

seq(seq( A183953(n, d-n), n=1..d-1), d=2..12) ; # R. J. Mathar, Mar 08 2021

CROSSREFS

Column 1 is A030273. A183946 (column 2), A183947 (column 3), A183954 (row 3), A183955 (row 4).

Sequence in context: A091954 A325167 A213408 * A080236 A221646 A249161

Adjacent sequences:  A183950 A183951 A183952 * A183954 A183955 A183956

KEYWORD

nonn,tabl

AUTHOR

R. H. Hardin, Jan 08 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 10 05:09 EDT 2021. Contains 343748 sequences. (Running on oeis4.)