The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A183953 T(n,k) is the number of strings of numbers x(i=1..n) in 0..k with sum i^2*x(i) equal to k*n^2. 17
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 3, 4, 5, 1, 1, 2, 4, 8, 10, 7, 2, 1, 2, 6, 14, 27, 26, 10, 1, 1, 3, 7, 21, 53, 78, 61, 20, 3, 1, 3, 9, 32, 94, 180, 219, 147, 37, 3, 1, 3, 12, 48, 161, 398, 656, 649, 339, 77, 4, 1, 3, 14, 61, 259, 770, 1613, 2195, 1805, 771, 118, 2, 1, 4, 17 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,9
COMMENTS
T(n,k) is the number of integer lattice points in k*C(n) where C(n) is the polytope in R^n defined by the equation Sum_{1<=i<=n} i^2*x_i = n^2 and the inequalities 0 <= x_i <= 1. The vertices of the polytope have rational coordinates. Thus row n of the table is an Ehrhart quasi-polynomial of degree n-1. - Robert Israel, Jul 10 2019
LINKS
EXAMPLE
Table starts
.1..1...1....1.....1.....1......1......1.......1.......1.......1........1
.1..1...1....2.....2.....2......2......3.......3.......3.......3........4
.1..2...2....3.....4.....6......7......9......12......14......17.......19
.1..1...4....8....14....21.....32.....48......61......82.....108......139
.2..5..10...27....53....94....161....259.....399.....578.....811.....1120
.1..7..26...78...180...398....770...1387....2330....3738....5772.....8599
.2.10..61..219...656..1613...3539...7099...13225...23247...38938....62599
.1.20.147..649..2195..6301..15601..34847...71509..137520..249799...433038
.3.37.339.1805..7250.23611..65909.163588..369777..775045.1525468..2847243
.3.77.771.4987.23044.85595.268008.737538.1830390.4178324.8894137.17852441
Some solutions for n=5
..4....1....3....0....4....4....0....3....1....3....0....0....0....2....1....0
..3....2....1....0....3....3....0....1....2....1....4....4....0....4....2....4
..3....0....2....1....2....4....4....3....1....4....2....1....0....1....3....4
..2....1....0....1....1....3....4....1....2....2....1....0....0....3....4....3
..1....3....3....3....2....0....0....2....2....1....2....3....4....1....0....0
MAPLE
A183953rec := proc(n, k, s)
option remember;
local c;
if s < 0 then
return 0 ;
elif n = 0 then
if s =0 then
return 1;
else
return 0 ;
end if;
else
add( procname(n-1, k, s-c*n^2), c=0..k) ;
end if;
end proc:
A183953 := proc(n, k)
A183953rec(n, k, k*n^2) ;
end proc:
seq(seq( A183953(n, d-n), n=1..d-1), d=2..12) ; # R. J. Mathar, Mar 08 2021
MATHEMATICA
r[n_, k_, s_] := r[n, k, s] = Which[s < 0, 0, n == 0, If[s == 0, 1, 0], True, Sum[r[n-1, k, s-c*n^2], {c, 0, k}]];
T[n_, k_] := r[n, k, k*n^2];
Table[Table[T[n, d-n], {n, 1, d-1}], {d, 2, 14}] // Flatten (* Jean-François Alcover, Jul 22 2022, after R. J. Mathar *)
CROSSREFS
Column 1 is A030273. A183946 (column 2), A183947 (column 3), A183954 (row 3), A183955 (row 4).
Sequence in context: A091954 A325167 A213408 * A080236 A351450 A221646
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 08 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 03:50 EDT 2024. Contains 373432 sequences. (Running on oeis4.)