login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325939
Expansion of Sum_{k>=1} x^(2*k) / (1 + x^k).
4
0, 1, -1, 2, -1, 1, -1, 3, -2, 1, -1, 3, -1, 1, -3, 4, -1, 1, -1, 3, -3, 1, -1, 5, -2, 1, -3, 3, -1, 1, -1, 5, -3, 1, -3, 4, -1, 1, -3, 5, -1, 1, -1, 3, -5, 1, -1, 7, -2, 1, -3, 3, -1, 1, -3, 5, -3, 1, -1, 5, -1, 1, -5, 6, -3, 1, -1, 3, -3, 1, -1, 7, -1, 1, -5, 3, -3, 1, -1, 7
OFFSET
1,4
COMMENTS
Number of even divisors of n minus number of odd strong divisors of n (i.e. odd divisors > 1).
LINKS
FORMULA
G.f.: Sum_{k>=2} (-1)^k * x^k / (1 - x^k).
a(n) = Sum_{d|n, d>1} (-1)^d.
a(n) = 1 - A048272(n).
MATHEMATICA
nmax = 80; CoefficientList[Series[Sum[x^(2 k)/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
Table[DivisorSum[n, (-1)^# &, # > 1 &], {n, 1, 80}]
PROG
(PARI) A325939(n) = sumdiv(n, d, if(1==d, 0, ((-1)^d))); \\ Antti Karttunen, Sep 20 2019
CROSSREFS
Cf. A032741, A048272, A075997 (partial sums), A325937.
Sequence in context: A347442 A336424 A353236 * A318586 A222580 A376140
KEYWORD
sign,look
AUTHOR
Ilya Gutkovskiy, Sep 09 2019
STATUS
approved