login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325941
Expansion of Sum_{k>=1} k * x^(2*k) / (1 + x^k)^2.
1
0, 1, -2, 5, -4, 4, -6, 17, -14, 6, -10, 28, -12, 8, -36, 49, -16, 13, -18, 46, -52, 12, -22, 100, -44, 14, -68, 64, -28, 24, -30, 129, -84, 18, -92, 121, -36, 20, -100, 166, -40, 32, -42, 100, -192, 24, -46, 292, -90, 31, -132, 118, -52, 40, -148, 232, -148, 30, -58, 264
OFFSET
1,3
LINKS
FORMULA
G.f.: Sum_{k>=2} (-1)^k * (k - 1) * x^k / (1 - x^k)^2.
a(n) = Sum_{d|n} (-1)^(n/d) * (n - d).
a(n) = A000593(n) - n * A048272(n).
MATHEMATICA
nmax = 60; CoefficientList[Series[Sum[k x^(2 k)/(1 + x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
Table[Sum[(-1)^(n/d) (n - d), {d, Divisors[n]}], {n, 1, 60}]
PROG
(PARI) {a(n) = sumdiv(n, d, (-1)^(n/d)*(n-d))} \\ Seiichi Manyama, Sep 14 2019
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Sep 09 2019
STATUS
approved