

A211247


Irregular triangle read by rows: numbers b_m(i) related to Bernoulli and Euler polynomials.


1



2, 5, 4, 4, 2, 7, 13, 4, 6, 9, 2, 9, 26, 25, 4, 8, 20, 16, 2, 11, 43, 70, 41, 4, 10, 35, 50, 25, 2, 13, 64, 147, 155, 61, 4, 12, 54, 112, 105, 36, 2, 15, 89, 264, 406, 301, 85, 4, 14, 77, 210, 294, 196, 49, 2, 17, 118, 429, 870, 966, 532, 113, 4, 16, 104, 352, 660, 672, 336, 64, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,1


COMMENTS

See the Sun (2008) reference for the (complicated) precise definition.
It appears that every second row equals every second row of A034807.  Ralf Stephan, Oct 26 2013


LINKS

Table of n, a(n) for n=2..72.
ZhiWei Sun, On sums of binomial coefficients and their applications, arXiv:math/0404385 [math.NT], 20042008.
ZhiWei Sun, On sums of binomial coefficients and their applications, Discrete Math. 308 (2008), no. 18, 42314245. MR2427754(2010d:05002).


EXAMPLE

Triangle begins:
2
5 4
4 2
7 13 4
6 9 2
9 26 25 4
8 20 16 2
11 43 70 41 4
10 35 50 25 2
13 64 147 155 61 4
12 54 112 105 36 2
...


PROG

(PARI)
c(m, i) = binomial(m+1i, i)*(m*m+m2*i)/((mi)*(m+1i));
d(m, i) = binomial(mi, i)*m/(mi);
b(m, i) = if ( m%2==0, d(m, i), c(m, i) );
for (m=2, 16, for (i=1, ceil(m/2), print1( b(m, i), ", " ))) \\ Hugo Pfoertner, Nov 01 2017


CROSSREFS

Cf. A034807, A211246, A267633.
Sequence in context: A083798 A197377 A172483 * A021397 A325941 A104658
Adjacent sequences: A211244 A211245 A211246 * A211248 A211249 A211250


KEYWORD

nonn,tabf


AUTHOR

N. J. A. Sloane, Apr 05 2012


EXTENSIONS

Corrected and extended by Hugo Pfoertner, Nov 01 2017


STATUS

approved



