login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A070084
Greatest common divisor of sides of integer triangles [A070080(n), A070081(n), A070082(n)], sorted by perimeter, sides lexicographically ordered.
21
1, 1, 2, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 3, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 7, 2, 1, 2, 1, 1, 1
OFFSET
1,3
COMMENTS
a(n)>1 iff there exists a smaller similar triangle [A070080(k), A070081(k), A070082(k)] with k<n and A070080(n)=A070080(k)*a(n), A070081(n)=A070081(k)*a(n) and A070082(n)=A070082(k)*a(n).
FORMULA
a(n) = GCD(A070080(n), A070081(n), A070082(n)).
MATHEMATICA
maxPer = 22; maxSide = Floor[(maxPer - 1)/2]; order[{a_, b_, c_}] := (a + b + c)*maxPer^3 + a*maxPer^2 + b*maxPer + c; triangles = Reap[Do[If[a + b + c <= maxPer && c - b < a < c + b && b - a < c < b + a && c - a < b < c + a, Sow[{a, b, c}]], {a, 1, maxSide}, {b, a, maxSide}, {c, b, maxSide}]][[2, 1]]; GCD @@@ Sort[triangles, order[#1] < order[#2] &] (* Jean-François Alcover, May 27 2013 *)
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, May 05 2002
STATUS
approved