The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A070110 Numbers k such that [A070080(k), A070081(k), A070082(k)] is an integer triangle with relatively prime side lengths. 14
 1, 2, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A070084(a(k)) = gcd(A070080(a(k)), A070081(a(k)), A070082(a(k))) = 1; all integer triangles [A070080(a(k)), A070081(a(k)), A070082(a(k))] are mutually nonisomorphic. LINKS Jean-François Alcover, Table of n, a(n) for n = 1..789 Reinhard Zumkeller, Integer-sided triangles EXAMPLE 13 is a term: [A070080(13), A070081(13), A070082(13)]=[2,4,5], A070084(13)=gcd(2,4,5)=1. MATHEMATICA m = 50 (* max perimeter *); sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2 &]; triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1] & // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]] &]; Position[triangles, {a_, b_, c_} /; GCD[a, b, c] == 1] // Flatten (* Jean-François Alcover, Oct 04 2021 *) CROSSREFS Cf. A051493, A070113, A070116, A070119, A070122, A070125, A070128, A070131, A070134, A070137, A070084. Sequence in context: A190225 A276706 A271396 * A049095 A324583 A101742 Adjacent sequences:  A070107 A070108 A070109 * A070111 A070112 A070113 KEYWORD nonn AUTHOR Reinhard Zumkeller, May 05 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 29 18:25 EDT 2022. Contains 354913 sequences. (Running on oeis4.)