login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Sum_{k>=1} x^(2*k) / (1 + x^k)^2.
9

%I #22 Jun 22 2024 14:12:34

%S 0,1,-2,4,-4,4,-6,11,-10,6,-10,18,-12,8,-20,26,-16,13,-18,28,-28,12,

%T -22,48,-28,14,-36,38,-28,24,-30,57,-44,18,-44,62,-36,20,-52,74,-40,

%U 32,-42,58,-72,24,-46,110,-54,31,-68,68,-52,40,-68,100,-76,30,-58,116

%N Expansion of Sum_{k>=1} x^(2*k) / (1 + x^k)^2.

%H Seiichi Manyama, <a href="/A325940/b325940.txt">Table of n, a(n) for n = 1..10000</a>

%H Joerg Arndt, <a href="http://arxiv.org/abs/1202.6525">On computing the generalized Lambert series</a>, arXiv:1202.6525v3 [math.CA], (2012).

%F G.f.: Sum_{k>=2} (-1)^k * (k - 1) * x^k / (1 - x^k).

%F a(n) = Sum_{d|n} (-1)^d * (d - 1).

%F a(n) = A048272(n) - A002129(n).

%F Faster converging series: A(q) = Sum_{n >= 1} (-1)^n*q^(n^2)*((n-1)*q^(3*n) + n*q^(2*n) + (n-2)*q^n + n-1)/((1 + q^n)*(1 - q^(2*n))) - apply the operator t*d/dt to equation 1 in Arndt, then set t = -q and x = q. - _Peter Bala_, Jan 22 2021

%F a(n) = A128315(n, 2). - _G. C. Greubel_, Jun 22 2024

%t nmax = 60; CoefficientList[Series[Sum[x^(2 k)/(1 + x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest

%t Table[Sum[(-1)^d (d - 1), {d, Divisors[n]}], {n, 1, 60}]

%o (PARI) {a(n) = sumdiv(n, d, (-1)^d*(d-1))} \\ _Seiichi Manyama_, Sep 14 2019

%o (Magma)

%o A325940:= func< n | (&+[0^(n mod j)*(-1)^j*(j-1): j in [1..n]]) >;

%o [A325940(n): n in [1..70]]; // _G. C. Greubel_, Jun 22 2024

%o (SageMath)

%o def A325940(n): return sum(0^(n%j)*(-1)^j*(j-1) for j in range(1, n+1))

%o [A325940(n) for n in range(1,71)] # _G. C. Greubel_, Jun 22 2024

%Y Cf. A002129, A048272, A065608, A128315, A363615, A363616.

%K sign,look

%O 1,3

%A _Ilya Gutkovskiy_, Sep 09 2019