login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363616
Expansion of Sum_{k>0} x^(4*k)/(1+x^k)^4.
6
0, 0, 0, 1, -4, 10, -20, 36, -56, 80, -120, 176, -220, 266, -368, 491, -560, 634, -816, 1050, -1160, 1210, -1540, 1982, -2028, 2080, -2656, 3192, -3276, 3380, -4060, 4986, -5080, 4896, -6008, 7345, -7140, 6954, -8656, 10224, -9880, 9796, -11480, 13552, -13668, 12650
OFFSET
1,5
LINKS
FORMULA
G.f.: Sum_{k>0} binomial(k-1,3) * (-x)^k/(1 - x^k).
a(n) = Sum_{d|n} (-1)^d * binomial(d-1,3).
a(n) = A128315(n, 4), for n >= 4. - G. C. Greubel, Jun 22 2024
MATHEMATICA
a[n_] := DivisorSum[n, (-1)^# * Binomial[# - 1, 3] &]; Array[a, 50] (* Amiram Eldar, Jul 25 2023 *)
PROG
(PARI) my(N=50, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=1, N, x^(4*k)/(1+x^k)^4)))
(PARI) a(n) = sumdiv(n, d, (-1)^d*binomial(d-1, 3));
(Magma)
A363616:= func< n | (&+[(-1)^d*Binomial(d-1, 3): d in Divisors(n)]) >;
[A363616(n): n in [1..60]]; // G. C. Greubel, Jun 22 2024
(SageMath)
def A363616(n): return sum(0^(n%j)*(-1)^j*binomial(j-1, 3) for j in range(4, n+1))
[A363616(n) for n in range(1, 61)] # G. C. Greubel, Jun 22 2024
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jun 11 2023
STATUS
approved