login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002129
Generalized sum of divisors function: excess of sum of odd divisors of n over sum of even divisors of n.
(Formerly M3236 N1307)
82
1, -1, 4, -5, 6, -4, 8, -13, 13, -6, 12, -20, 14, -8, 24, -29, 18, -13, 20, -30, 32, -12, 24, -52, 31, -14, 40, -40, 30, -24, 32, -61, 48, -18, 48, -65, 38, -20, 56, -78, 42, -32, 44, -60, 78, -24, 48, -116, 57, -31, 72, -70, 54, -40, 72, -104, 80, -30, 60, -120, 62, -32, 104, -125
OFFSET
1,3
COMMENTS
Glaisher calls this zeta(n) or zeta_1(n). - N. J. A. Sloane, Nov 24 2018
Coefficients in expansion of Sum_{n >= 1} x^n/(1+x^n)^2 = Sum_{n >= 1} (-1)^(n-1)*n*x^n/(1-x^n).
Unsigned sequence is A113184. - Peter Bala, Dec 14 2020
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 162, #16, (6), 3rd formula.
Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 259-262.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
Steven R. Finch, The "One-Ninth" Constant [Broken link]
Steven R. Finch, The "One-Ninth" Constant [From the Wayback machine]
J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).
Heekyoung Hahn, Convolution sums of some functions on divisors, arXiv:1507.04426 [math.NT], 2015.
P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., (2) 19 (1919), 75-113; Coll. Papers II, pp. 303-341.
FORMULA
Multiplicative with a(p^e) = 3-2^(e+1) if p = 2; (p^(e+1)-1)/(p-1) if p > 2. - David W. Wilson, Sep 01 2001
G.f.: Sum_{n>=1} n*x^n*(1-3*x^n)/(1-x^(2*n)). - Vladeta Jovovic, Oct 15 2002
L.g.f.: Sum_{n>=1} a(n)*x^n/n = log[ Sum_{n>=0} x^(n(n+1)/2) ], the log of the g.f. of A010054. - Paul D. Hanna, Jun 28 2008
Dirichlet g.f. zeta(s)*zeta(s-1)*(1-4/2^s). Dirichlet convolution of A000203 and the quasi-finite (1,-4,0,0,0,...). - R. J. Mathar, Mar 04 2011
a(n) = A000593(n)-A146076(n). - R. J. Mathar, Mar 05 2011
a(n) = Sum_{j = 1..n} Sum_{k = 1..j} (-1)^(j+1)*cos(2*k*n*Pi/j). - Peter Bala, Aug 24 2022
EXAMPLE
a(28) = 40 because the sum of the even divisors of 28 (2, 4, 14 and 28) = 48 and the sum of the odd divisors of 28 (1 and 7) = 8, their absolute difference being 40.
MAPLE
A002129 := proc(n) -add((-1)^d*d, d=numtheory[divisors](n)) ; end proc: # R. J. Mathar, Mar 05 2011
MATHEMATICA
f[n_] := Block[{c = Divisors@ n}, Plus @@ Select[c, EvenQ] - Plus @@ Select[c, OddQ]]; Array[f, 64] (* Robert G. Wilson v, Mar 04 2011 *)
a[n_] := DivisorSum[n, -(-1)^#*#&]; Array[a, 80] (* Jean-François Alcover, Dec 01 2015 *)
f[p_, e_] := If[p == 2, 3 - 2^(e + 1), (p^(e + 1) - 1)/(p - 1)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 64] (* Amiram Eldar, Jul 20 2019 *)
PROG
(PARI) a(n)=if(n<1, 0, -sumdiv(n, d, (-1)^d*d))
(PARI) {a(n)=n*polcoeff(log(sum(k=0, (sqrtint(8*n+1)-1)\2, x^(k*(k+1)/2))+x*O(x^n)), n)} \\ Paul D. Hanna, Jun 28 2008
CROSSREFS
A diagonal of A060044.
a(2^n) = -A036563(n+1). a(3^n) = A003462(n+1).
First differences of -A024919(n).
Sequence in context: A016719 A196999 A090370 * A113184 A136004 A248864
KEYWORD
sign,easy,nice,mult
EXTENSIONS
Better description and more terms from Robert G. Wilson v, Dec 14 2000
More terms from N. J. A. Sloane, Mar 19 2001
STATUS
approved