The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A113184 Absolute difference between sum of odd divisors of n and sum of even divisors of n. 17
 1, 1, 4, 5, 6, 4, 8, 13, 13, 6, 12, 20, 14, 8, 24, 29, 18, 13, 20, 30, 32, 12, 24, 52, 31, 14, 40, 40, 30, 24, 32, 61, 48, 18, 48, 65, 38, 20, 56, 78, 42, 32, 44, 60, 78, 24, 48, 116, 57, 31, 72, 70, 54, 40, 72, 104, 80, 30, 60, 120, 62, 32, 104, 125, 84, 48, 68, 90, 96, 48, 72 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS The generating function equals 1/8 at q = Lambda = 0.1076539192... (A072558) the "One-Ninth" constant. - Michael Somos, Jul 21 2006 Absolute value of A002129. - John W. Layman, Sep 27 2012 The Möbius transform is 1, 0, 3, 4, 5, 0, 7, 8, 9, 0, 11, 12, 13, 0, 15, 16, 17, 0, 19, 20, 21, 0, 23, 24, 25, 0, 27, ... - R. J. Mathar, Jan 08 2013 REFERENCES G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, p. 142. LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 Eric Weisstein's World of Mathematics, One-Ninth Constant. FORMULA Multiplicative with a(2^e) = 2^(e+1)-3 if e>0, a(p^e) = (p^(e+1)-1)/(p-1) if p>2. G.f.: Sum_{k>0} -(-x)^k/(1+(-x)^k)^2 = Sum_{k>0} k*x^k/(1-(-x)^k). Expansion of (1-(2/Pi)^2(2E(k)-K(k))K(k))/8 in powers of nome q where E(k) and K(k) are complete elliptic integrals and q=exp(-Pi*K(k')/K(k)). - Michael Somos, Jul 21 2006 Bisection: a(2*k-1) = A000203(2*k-1), a(2*k) = A146076(2*k) - A000593(2*k), k >= 1. See the Hardy reference where a(n) = sigma^*_1(n). - Wolfdieter Lang, Jan 07 2017 From Peter Bala, Dec 11 2020: (Start) a(n) = Sum_{d | n, d != 2 (mod 4)} d. O.g.f.: Sum_{k >= 1, k != 2 (mod 4)} k*x^k/(1 - x^k). Cf. A284362. Define a(n) = 0 for n < 1. Then a(n) = e(n) + a(n-1) + a(n-3) - a(n-6) - a(n-10) + + - -, where [1, 3, 6, 10, ...] is the sequence of triangular numbers A000217, and e(n) = (-1)^(n+1)*n if n is a triangular number; otherwise e(n) = 0. Examples of this recurrence are given below. (End) Dirichlet g.f.: Sum_{n>0} a(n)/n^s = zeta(s) * zeta(s-1) * (1+2^(3-3*s)) / (1+2^(1-s)). - Werner Schulte, Jan 23 2021 Sum_{k=1..n} a(k) ~ Pi^2 * n^2 / 16. - Vaclav Kotesovec, Aug 20 2021 EXAMPLE From Peter Bala, Dec 11 2020: (Start) n = 15: n is a triangular number, so e(n) = (-1)^(n+1)*n = 15 and a(15) = 15 + a(14) + a(12) - a(9) - a(5) =  15 + 8 + 20 - 13 - 6 = 24; n = 16: n is a not triangular number, so e(n) = 0 and a(16) = a(15) + a(13) - a(10) - a(6) + a(1) =  24 + 14 - 6 - 4 + 1 = 29. (End) MATHEMATICA f[n_]:=Module[{dn=Divisors[n], odn, edn}, odn=Select[dn, OddQ]; edn=Select[dn, EvenQ]; Abs[Total[odn]-Total[edn]]] f/@Range[80]  (* Harvey P. Dale, Feb 25 2011 *) max = 80; s = (1/x)*Sum[k*x^k/(1 - (-x)^k), {k, 1, max}] + O[x]^max; CoefficientList[s, x] (* Jean-François Alcover, Dec 04 2015 *) f[p_, e_] := If[p == 2, 2^(e + 1) - 3, (p^(e + 1) - 1)/(p - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jun 12 2022 *) PROG (PARI) a(n)=if(n<1, 0, (-1)^n*sumdiv(n, d, (-1)^d*d)) (PARI) {a(n)=local(A, p, e); if(n<1, 0, A=factor(n); prod(k=1, matsize(A)[1], if(p=A[k, 1], e=A[k, 2]; if(p==2, 2^(e+1)-3, (p^(e+1)-1)/(p-1)))))} CROSSREFS Cf. A002129(n) = -(-1)^n a(n). Cf. A072558, A284362. Sequence in context: A196999 A090370 A002129 * A136004 A248864 A134299 Adjacent sequences:  A113181 A113182 A113183 * A113185 A113186 A113187 KEYWORD nonn,mult AUTHOR Michael Somos, Oct 17 2005 EXTENSIONS Name corrected by Wolfdieter Lang, Jan 07 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 6 20:41 EDT 2022. Contains 355114 sequences. (Running on oeis4.)