The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002130 Generalized sum of divisors function. (Formerly M2238 N0888) 2
 1, -1, 1, 3, -2, 1, -5, 23, -25, 27, -49, 74, -62, 85, -132, 165, -195, 229, -240, 325, -374, 379, -469, 553, -590, 746, -805, 854, -1000, 1085, -1168, 1284, -1396, 1668, -1767, 1815, -2030, 2297, -2450, 2480, -2849, 3293, -3113, 3278, -3772, 4091, -4230, 4213, -4830, 5607, -5499, 5430, -6018, 6922, -6880 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,4 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Table of n, a(n) for n=3..57. P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., 19 (1919), 75-113; Coll. Papers II, pp. 303-341. FORMULA G.f.: (t(1)^2-t(2))/2 where t(i) = Sum_{n>=1} x^(n*i)/(1+x^n)^(2*i), i=1..2. - Vladeta Jovovic, Sep 21 2007 MATHEMATICA terms = 55; offset = 3; t[i_] := Sum[x^(n*i)/(1 + x^n)^(2*i), {n, 1, terms + 5}]; s = Series[(t[1]^2 - t[2])/2, {x, 0, terms + 5 }]; A002130 = CoefficientList[s, x][[offset + 1 ;; terms + offset]] (* Jean-François Alcover, Dec 11 2014, after Vladeta Jovovic *) CROSSREFS A diagonal of A060044. Sequence in context: A144252 A248033 A318254 * A089145 A324644 A361470 Adjacent sequences: A002127 A002128 A002129 * A002131 A002132 A002133 KEYWORD sign,easy AUTHOR N. J. A. Sloane EXTENSIONS More terms from Naohiro Nomoto, Jan 24 2002 More terms from Vladeta Jovovic, Sep 21 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 4 20:55 EDT 2023. Contains 363128 sequences. (Running on oeis4.)